A hybrid approach to quantum dynamics based on the integration of quantum calculations and machine learning

基于量子计算和机器学习集成的量子动力学混合方法

基本信息

  • 批准号:
    RGPIN-2020-04969
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Quantum mechanics provides the most accurate description of molecular dynamics that determine microscopic chemical reactions and the structure and functionality of quantum materials. However, the fully quantum description of complex molecular systems is difficult. The present work aims to capitalize on recent developments in quantum dynamics theory and in machine learning in order to develop new approaches to quantum dynamics. The goal is to develop quantum approaches that will (1) require less computational resources than currently established approaches; (2) produce not only quantum observables but also the uncertainties of these observables stemming from limitations imposed by the difficulty of solving the Schrodinger equation; (3) combine quantum theory of molecular dynamics with experimental observations in order to produce improved descriptions of microscopic molecular interactions; (4) make accurate predictions of quantum observables for systems and experimental conditions that are currently out of reach of rigorous quantum theory. These goals will be achieved by integrating Bayesian machine learning (ML) into the methodology of quantum calculations. This will produce a flexible framework for quantum dynamics calculations. The core of this framework will be the nuclear Schrodinger equation. However, the inputs into the Schrodinger equation will be designed by ML models and the results of the quantum calculations will be processed by another ML model. This will dramatically reduce the number of quantum calculations required for accurate predictions of dynamical properties. Moreover, this will allow for new, currently unfeasible, problems to be solved. Specifically, we will aim to address the following major challenges in quantum molecular dynamics: (i) The inverse scattering problem aiming to obtain accurate potentials for microscopic molecular interactions from experimental observables. (ii) System-agnostic construction of global potential energy surfaces for very high-dimensional systems (up to 100 dimensions). (iii) Improving the accuracy of quantum predictions based on approximate dynamical approaches by combining the machine learning models that interpolate and generalize approximate results with machine learning models that infer the difference between the approximate results and rigorous or experimental results. (iv) Understand how to use emerging quantum computing devices for applications in molecular dynamics. Our work will provide general tools to make quantum predictions for bigger systems and with better accuracy than currently feasible. This could be a key advance for numerous research fields, ranging from drug design, to catalysis, to chemical kinetics. Our work will link emerging quantum computing technologies and molecular dynamics, paving a way for a new application for quantum technologies. This will contribute to maintaining Canada's leadership position in practical quantum computing industry.
量子力学提供了对分子动力学的最准确描述,分子动力学决定了微观化学反应以及量子材料的结构和功能。然而,复杂分子系统的完全量子描述是困难的。本工作旨在利用量子动力学理论和机器学习的最新发展,以开发量子动力学的新方法。其目标是开发如下量子方法:(1)比目前确定的方法需要更少的计算资源;(2)不仅产生量子可观测数据,而且还产生由于求解薛定谔方程的困难而造成的这些可观测数据的不确定性;(3)将分子动力学的量子理论与实验观测相结合,以改进对微观分子相互作用的描述;(4)对目前严格的量子理论无法企及的系统和实验条件做出精确的量子可观测数据预测。 这些目标将通过将贝叶斯机器学习(ML)整合到量子计算方法中来实现。这将为量子动力学计算提供一个灵活的框架。这个框架的核心将是核薛定谔方程。然而,薛定谔方程的输入将由ML模型设计,而量子计算的结果将由另一个ML模型处理。这将大大减少精确预测动力学性质所需的量子计算数量。此外,这将允许解决目前不可行的新问题。 具体地说,我们将致力于解决量子分子动力学中的以下主要挑战: (I)逆散射问题,目的是从实验观测数据中获得微观分子相互作用的精确势。 (2)超高维系统(最多100维)全球势能面的系统不可知性构造。 (Iii)通过将对近似结果进行内插和推广的机器学习模型与推断近似结果与严格或实验结果之间的差异的机器学习模型相结合,来提高基于近似动力学方法的量子预测的精度。 (4)了解如何将新兴的量子计算设备应用于分子动力学。 我们的工作将提供通用的工具来对更大的系统进行量子预测,并具有比目前可行的更高的精度。这可能是许多研究领域的关键进展,从药物设计到催化,再到化学动力学。我们的工作将把新兴的量子计算技术和分子动力学联系起来,为量子技术的新应用铺平道路。这将有助于保持加拿大在实用量子计算行业的领先地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krems, Roman其他文献

Krems, Roman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krems, Roman', 18)}}的其他基金

A hybrid approach to quantum dynamics based on the integration of quantum calculations and machine learning
基于量子计算和机器学习集成的量子动力学混合方法
  • 批准号:
    RGPIN-2020-04969
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
A hybrid approach to quantum dynamics based on the integration of quantum calculations and machine learning
基于量子计算和机器学习集成的量子动力学混合方法
  • 批准号:
    RGPIN-2020-04969
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2018
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2017
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Searching for quantum speedup in quantum annealers
寻找量子退火器中的量子加速
  • 批准号:
    498907-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Engage Grants Program
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2016
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2015
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum dynamics of two-body, few-body and many-body molecular systems at low temperatures
低温下二体、少体和多体分子系统的量子动力学
  • 批准号:
    RGPIN-2014-06419
  • 财政年份:
    2014
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Cold controlled chemistry
冷控化学
  • 批准号:
    327529-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

量化 domain 的拓扑性质
  • 批准号:
    11771310
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
  • 批准号:
    50908133
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
  • 批准号:
    50671047
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
  • 批准号:
    30470298
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
  • 批准号:
    2339116
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Continuing Grant
The materials approach to quantum spacetime
量子时空的材料方法
  • 批准号:
    MR/X034453/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Fellowship
Operational Quantum Mereology: an Information Scrambling Approach
操作量子分体学:一种信息置乱方法
  • 批准号:
    2310227
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
  • 批准号:
    22KF0067
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
  • 批准号:
    EP/W02778X/2
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Fellowship
Quantum controlled collisions; an empirical approach for studying the interaction potential of molecule-surface systems.
量子控制碰撞;
  • 批准号:
    EP/X037886/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Research Grant
Metasurface enhanced and machine learning aided spectrochemical liquid biopsy
超表面增强和机器学习辅助光谱化学液体活检
  • 批准号:
    10647397
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
Developing quantum probabilistic approach to spectral graph theory and multi-variate orthogonal polynomials
开发谱图理论和多元正交多项式的量子概率方法
  • 批准号:
    23K03126
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A next-generation quantum computing based approach to enzyme targeted drug discovery
基于下一代量子计算的酶靶向药物发现方法
  • 批准号:
    10075020
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Feasibility Studies
A Universal Approach for Solving Real-World Problems Using Quantum Dynamics: Coherent States for Molecular Simulations (COSMOS)
使用量子动力学解决现实世界问题的通用方法:分子模拟的相干态 (COSMOS)
  • 批准号:
    EP/X026973/1
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了