Molecular Photonics in the Strong Coupling Regime

强耦合状态下的分子光子学

基本信息

  • 批准号:
    RGPIN-2020-06566
  • 负责人:
  • 金额:
    $ 3.64万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Light-matter interaction is at the heart of most optical phenomena that we are familiar with such as absorption, emission and scattering. We normally treat these by assuming that light does not significantly modify the underlying electronic states of the material it interacts with. The extreme case where light-matter interaction is so strong that this assumption fails has been coined the strong coupling regime. In this regime, new half-light, half-matter quasiparticles called polaritons emerge. In thin films of organic semiconductors--the same class of materials used in display technologies and low-cost solar cells--polaritons can readily form at room temperature. This Program will study collective quantum phenomena in the strong-coupling regime. It will focus on two distinct regimes, where fascinating physics occur. First, at high densities, polaritons can form a macroscopic quantum state termed a Bose-Einstein condensate. We will engineer a novel type of polariton condensate, based on open-shell molecules that will allow for magneto-optical effects to emerge. In addition, we will use lattices of polariton condensates to simulate a complex phenomenon known as many-body localization. This will allow us to gain further understanding of the barrier between quantum and classical physics. Second, at low densities, the emergence of strong light-matter coupling can modify molecular processes that occur within or between organic molecules. The extent to which these processes can be modified depends strongly on the number of molecules per optical mode in the system. We will investigate modifications of two processes directly relevant to increasing the efficiency of organic light-emitting diodes: reverse intersystem crossing and triplet-triplet annihilation. By engineering nanoscale optical cavities, we will reach a regime where the rates for these processes can be significantly enhanced. The findings from this Program will have direct applications in sensing, optoelectronics and our ability to simulate complex quantum systems. At completion, the Program will have trained 3 PhD, 2 MSc and 5 undergraduate students with a broad skill set in photonics, semiconductor science, quantum technologies and nanofabrication highly needed to support priority areas in Canada's technology industry.
光-物质相互作用是我们所熟悉的大多数光学现象的核心,例如吸收,发射和散射。我们通常通过假设光不会显著改变与之相互作用的材料的潜在电子状态来处理这些问题。在极端情况下,光与物质的相互作用如此之强,以至于这个假设失败,这种情况被称为强耦合状态。在这种情况下,出现了称为极化子的新的半光、半物质准粒子。 在有机半导体薄膜中,极化激元在室温下很容易形成,有机半导体与显示技术和低成本太阳能电池中使用的材料是同一类。本课程将研究强耦合体系中的集体量子现象。它将集中在两个不同的制度,在迷人的物理发生。首先,在高密度下,极化激元可以形成称为玻色-爱因斯坦凝聚的宏观量子态。我们将设计一种新型的极化激元凝聚体,基于开放的壳层分子,这将允许磁光效应出现。此外,我们将使用极化激元凝聚晶格来模拟一种称为多体局域化的复杂现象。这将使我们能够进一步理解量子物理和经典物理之间的障碍。其次,在低密度下,强的光-物质耦合的出现可以改变有机分子内部或之间发生的分子过程。这些过程可以被修改的程度很大程度上取决于系统中每个光学模式的分子数量。我们将研究直接与提高有机发光二极管效率相关的两个过程的修改:反向系间穿越和三重态-三重态湮灭。通过设计纳米级光学腔,我们将达到一个制度,这些过程的速率可以显着提高。该计划的发现将直接应用于传感,光电子学和我们模拟复杂量子系统的能力。完成后,该计划将培养3名博士,2名硕士和5名本科生,他们在光子学,半导体科学,量子技术和纳米纤维方面拥有广泛的技能,这些技能是加拿大技术行业急需的优先领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KénaCohen, Stéphane其他文献

KénaCohen, Stéphane的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KénaCohen, Stéphane', 18)}}的其他基金

Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Light-Matter Photonics
光物质光子学
  • 批准号:
    CRC-2020-00295
  • 财政年份:
    2022
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Molecular Photonics in the Strong Coupling Regime
强耦合状态下的分子光子学
  • 批准号:
    RGPIN-2020-06566
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Photonic Devices
光子器件
  • 批准号:
    CRC-2020-00295
  • 财政年份:
    2021
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2020
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Towards tunable and scalable black phosphorus photodetectors
迈向可调谐和可扩展的黑磷光电探测器
  • 批准号:
    506808-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Strategic Projects - Group
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs
Towards Quantum Organic Optoelectronics
迈向量子有机光电子学
  • 批准号:
    RGPIN-2014-06129
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Grants Program - Individual
Passive microcavities for fast optical bistability
用于快速光学双稳态的无源微腔
  • 批准号:
    544136-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Engage Grants Program
Nanostructured and Molecular Photonics
纳米结构和分子光子学
  • 批准号:
    1000231166-2015
  • 财政年份:
    2018
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Canada Research Chairs

相似海外基金

COMPAS: co integration of microelectronics and photonics for air and water sensors
COMPAS:微电子学和光子学的共同集成,用于空气和水传感器
  • 批准号:
    10108154
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    EU-Funded
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016218/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
Quantum GaN-O-Photonics
量子 GaN-O-光子学
  • 批准号:
    EP/X040526/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
Picometre Surface Nanoscale Axial Photonics (PicoSNAP)
皮米表面纳米级轴向光子学 (PicoSNAP)
  • 批准号:
    EP/X03772X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
Monolithic generation & detection of squeezed light in silicon nitride photonics (Mono-Squeeze)
单片一代
  • 批准号:
    EP/X016749/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
CAREER: Enabling New States of Light in Mid-Wave Infrared Photonics for Gas Sensing Applications
职业:在气体传感应用的中波红外光子学中实现新的光态
  • 批准号:
    2340060
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Continuing Grant
The platform to unleash the transformative potential of integrated photonics
释放集成光子学变革潜力的平台
  • 批准号:
    10087597
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    EU-Funded
RII Track-4: NSF: Development of Semiconductor Lasers and Passive Devices on a Single Sapphire Platform for Integrated Microwave Photonics
RII Track-4:NSF:在单个蓝宝石平台上开发用于集成微波光子学的半导体激光器和无源器件
  • 批准号:
    2327229
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Standard Grant
Quantum GaN-O-Photonics
量子 GaN-O-光子学
  • 批准号:
    EP/X03982X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Research Grant
On-chip microwave generation and detection with Josephson photonics
使用约瑟夫森光子学进行片上微波生成和检测
  • 批准号:
    DE240100590
  • 财政年份:
    2024
  • 资助金额:
    $ 3.64万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了