Deep Learning with Applications in Pattern Recognition and Image Analysis
深度学习在模式识别和图像分析中的应用
基本信息
- 批准号:RGPIN-2020-06793
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of machine learning is to design algorithms and statistical models that perform “intelligent tasks” such as object and speech recognition, biometrics, computer vision, automated medical diagnosis and data mining, by learning from examples rather than following specific programming instructions. With the proliferation of big data sets in our society and onset of the big data revolution, machine learning has become a key component in contemporary information technologies as it facilitates efficient search and mining of large volumes of data, as well as intelligent processing of the data. The proposed research will focus on designing and analyzing novel machine learning algorithms that meet the challenges posed by multidimensional, unstructured and not annotated data often difficult to acquire in large quantities (e.g., medical data).. New and substantial research challenges arise in the analysis and design of algorithms that learn data distributions adapt to data nonstationarity and incorporate practical constraints on memory, complexity of algorithms leading to overparametrization, limits on training and computational speed and challenges in global optimization.
The research objectives are divided into two main themes: (1) Application of computational
learning theory and complexity regularization to analysis of deep convolutional and multilayer
neural networks, deep random forest classifiers in order to analyze their convergence, rate of convergence and learning speed. Design of new efficient and accurate kernel classifiers with superkernels; (2) Application of principal curves and manifolds in medical imaging for robust and accurate segmentation of cytological and histopathological slides, counting and classifying white and red blood cells and for 3D segmentation of tumors in ultrasound and in tomosynthesis breast images. Automatic feature extraction from medical images by the deep convolutional neural networks and combining them with powerful classifiers such as SVM and random forest.
The training component of the proposed research will provide 2 M.Sc. and 3 Ph.D. students each year with stimulating research challenges and immerse them in important current topics in machine learning. The research is expected to provide a deeper understanding of the fundamental principles of learning in deep networks as well as its practical aspects, such as fast and easy implementable algorithms with good performance.
机器学习的目标是设计算法和统计模型,执行“智能任务”,如对象和语音识别,生物识别,计算机视觉,自动医疗诊断和数据挖掘,通过从示例中学习,而不是遵循特定的编程指令。 随着大数据集在我们社会中的扩散和大数据革命的开始,机器学习已经成为当代信息技术的关键组成部分,因为它促进了对大量数据的有效搜索和挖掘,以及对数据的智能处理。拟议的研究将专注于设计和分析新颖的机器学习算法,以满足多维,非结构化和未注释的数据往往难以大量获取(例如,医学数据)。新的和实质性的研究挑战出现在算法的分析和设计中,学习数据分布适应数据非平稳性,并将内存的实际约束,算法的复杂性导致overparametrization,训练和计算速度的限制以及全局优化的挑战。
研究目标分为两大主题:(1)计算
学习理论和复杂度正则化分析深度卷积和多层
神经网络,深度随机森林分类器,以分析其收敛性,收敛速度和学习速度。设计具有超核的新的高效且准确的核分类器;(2)主曲线和流形在医学成像中的应用,用于细胞病理学和组织病理学载玻片的鲁棒且准确的分割,白色和红细胞的计数和分类,以及用于超声和断层合成乳腺图像中的肿瘤的3D分割。通过深度卷积神经网络从医学图像中自动提取特征,并将其与SVM和随机森林等强大的分类器相结合。
拟议研究的培训部分将提供2名硕士和3名博士。学生每年都有刺激的研究挑战,让他们沉浸在机器学习的重要当前主题中。该研究有望加深对深度网络学习基本原理及其实践方面的理解,例如快速、易于实现且性能良好的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krzyzak, Adam其他文献
Influence of feature set reduction on breast cancer malignancy classification of fine needle aspiration biopsies
- DOI:
10.1016/j.compbiomed.2016.10.007 - 发表时间:
2016-12-01 - 期刊:
- 影响因子:7.7
- 作者:
Jelen, Lukasz.;Krzyzak, Adam;Jelen, Michal - 通讯作者:
Jelen, Michal
Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies
- DOI:
10.2478/v10006-008-0007-x - 发表时间:
2008-01-01 - 期刊:
- 影响因子:1.9
- 作者:
Jelen, Lukasz;Fevens, Thomas;Krzyzak, Adam - 通讯作者:
Krzyzak, Adam
DENOISING OF THREE-DIMENSIONAL DATA CUBE USING BIVARIATE WAVELET SHRINKING
- DOI:
10.1142/s0218001411008725 - 发表时间:
2011-05-01 - 期刊:
- 影响因子:1.5
- 作者:
Chen, Guangyi;Bui, Tien D.;Krzyzak, Adam - 通讯作者:
Krzyzak, Adam
Nonparametric Regression Based on Hierarchical Interaction Models
- DOI:
10.1109/tit.2016.2634401 - 发表时间:
2017-03-01 - 期刊:
- 影响因子:2.5
- 作者:
Kohler, Michael;Krzyzak, Adam - 通讯作者:
Krzyzak, Adam
Automatic Epileptic Seizure Detection in EEG Using Nonsubsampled Wavelet-Fourier Features
- DOI:
10.1007/s40846-016-0214-0 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:2
- 作者:
Chen, Guangyi;Xie, Wenfang;Krzyzak, Adam - 通讯作者:
Krzyzak, Adam
Krzyzak, Adam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krzyzak, Adam', 18)}}的其他基金
Deep Learning with Applications in Pattern Recognition and Image Analysis
深度学习在模式识别和图像分析中的应用
- 批准号:
RGPIN-2020-06793 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning with Applications in Pattern Recognition and Image Analysis
深度学习在模式识别和图像分析中的应用
- 批准号:
RGPIN-2020-06793 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Learning with Applications in Pattern Recognition and Image Analysis
非参数学习在模式识别和图像分析中的应用
- 批准号:
RGPIN-2015-06412 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Application of deep learning to segmentation and grading of fine needle biopsy breast images
深度学习在乳腺细针活检图像分割和分级中的应用
- 批准号:
538142-2019 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Engage Grants Program
Nonparametric Learning with Applications in Pattern Recognition and Image Analysis
非参数学习在模式识别和图像分析中的应用
- 批准号:
RGPIN-2015-06412 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Learning with Applications in Pattern Recognition and Image Analysis
非参数学习在模式识别和图像分析中的应用
- 批准号:
RGPIN-2015-06412 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Learning with Applications in Pattern Recognition and Image Analysis
非参数学习在模式识别和图像分析中的应用
- 批准号:
RGPIN-2015-06412 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Learning with Applications in Pattern Recognition and Image Analysis
非参数学习在模式识别和图像分析中的应用
- 批准号:
RGPIN-2015-06412 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric estimation and learning with applications to object recognition and image analysis
非参数估计和学习及其在对象识别和图像分析中的应用
- 批准号:
270-2010 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric estimation and learning with applications to object recognition and image analysis
非参数估计和学习及其在对象识别和图像分析中的应用
- 批准号:
270-2010 - 财政年份:2013
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EAGER: IMPRESS-U: Random Matrix Theory and its Applications to Deep Learning
EAGER:IMPRESS-U:随机矩阵理论及其在深度学习中的应用
- 批准号:
2401227 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403088 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403090 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
- 批准号:
EP/Y037308/1 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Research Exchanges in the Mathematics of Deep Learning with Applications
深度学习数学及其应用研究交流
- 批准号:
EP/Y037286/1 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Research Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
- 批准号:
2403089 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Applications of Structure-Conforming Deep Operator Learning
合作研究:结构符合深度算子学习的理论与应用
- 批准号:
2309778 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Targeted Infusion Project: Development and Implementation of courses in Deep Learning for Industrial and Societal Applications
有针对性的注入项目:工业和社会应用深度学习课程的开发和实施
- 批准号:
2306300 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant