Human-AI interactions in real-world complex uncertain environments using a comprehensive reinforcement learning framework

使用综合强化学习框架在现实世界复杂的不确定环境中进行人机交互

基本信息

  • 批准号:
    554164-2020
  • 负责人:
  • 金额:
    $ 4.74万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The advent of Artificial Intelligence (AI) as a core technological approach to solve specific problems is both undeniable and remarkable. However, AI still operates primarily as a tool to execute narrow-focus tasks, rather than a supporting partner in a relationship with human users. Considering human and AI respective strengths and weaknesses, such a man-machine partnership has the potential to become more than the sum of its parts, leveraging complementary abilities to achieve results that would be otherwise impossible or very difficult to achieve with only one or the other. However, for AI agents to work as synergistically as possible with human users/operators, specific methods, approaches and technologies are warranted. The object of the proposed research is to advance those technologies and approaches, as well as to demonstrate their benefits in a real-life setting through practical application in a complex and sensitive environment. This project will combine the efforts of researchers from the University of Alberta and the JACOBB center with resources provided by AIR and Thales. Within this collaboration, we will investigate how human knowledge can be used to train AI agents in complex and real environments. It will also allow us to understand where and when the interaction of agents and humans allows us to achieve higher performance than agents alone or humans alone. To achieve this, different frameworks, interfaces and types of collaboration will first be tested. Subsequently, the feedback systems will be evaluated and compared with each other, sometimes involving humans and AI agents working alone, and sometimes a hybrid approach. The expected results will make the COGMENT platform, developed by AIR and at the heart of the methodology used for this project, more widely accessible and usable by the community.#(cr)#(lf)L'avènement de l'intelligence artificielle (IA) comme approche technologique de base pour résoudre des problèmes spécifiques est à la fois indéniable et remarquable. Cependant, l'IA fonctionne toujours principalement comme un outil pour exécuter des tâches étroitement ciblées, plutôt que comme un partenaire soutenant des utilisateurs humains en interagissant avec eux. Compte tenu des forces et des faiblesses respectives des humains et de l'IA, un tel partenariat humain-machine a le potentiel de devenir plus que la somme de ses parts, en tirant avantage de capacités complémentaires pour obtenir des résultats qui seraient autrement impossibles ou très difficiles à atteindre uniquement avec l'un ou l'autre. Cependant, pour que les agents d'IA travaillent de manière aussi synergique que possible avec les utilisateurs/opérateurs humains, des méthodes, approches et technologies plus spécifiques doivent être développées. L'objectif de ce projet est de faire progresser ces technologies et ces approches, ainsi que d'en démontrer les avantages au travers d'une application concrète dans un environnement complexe et sensible. Ce projet mettra en commun les efforts de chercheurs de l'Université de l'Alberta et du centre JACOBB avec les ressources offertes par AIR et Thales. Au travers de cette collaboration, seront examinées les manières dont le savoir humain peut être utilisé pour entrainer des agents IA dans des environnements réels complexes et sensibles. Elle permettra par ailleurs de comprendre où et quand l'interaction entre humains et agents nous permet d'atteindre des performances plus élevées que les agents seuls ou les humains seuls. Pour y parvenir, différents cadres, interfaces et types de collaborations seront d'abord testés. Par la suite, les systèmes de rétroaction seront évalués et comparés entre eux, impliquant tantôt les humains et les agents IA travaillants seuls, et tantôt une approche hybride. Les résultats attendus permettront de rendre la plateforme COGMENT, développée par AIR et au coeur de la méthodologie utilisée pour ce projet, plus largement accessible et utilisable par la communauté.
人工智能(AI)作为解决特定问题的核心技术方法的出现是不可否认的和显着的。然而,人工智能仍然主要作为一种工具来执行狭隘的任务,而不是与人类用户建立关系的支持伙伴。考虑到人类和人工智能各自的优势和劣势,这种人机合作伙伴关系有可能超越其各部分的总和,利用互补的能力来实现只有一个或另一个不可能或很难实现的结果。然而,为了使人工智能代理尽可能与人类用户/操作员协同工作,需要特定的方法,方法和技术。拟议研究的目的是推进这些技术和方法,并通过在复杂和敏感环境中的实际应用,展示其在现实生活中的好处。该项目将联合收割机的努力,研究人员从阿尔伯塔大学和JACOBB中心与资源提供的空气和泰利斯。在这次合作中,我们将研究如何利用人类知识在复杂和真实的环境中训练AI代理。它还将使我们能够了解智能体和人类的交互在何时何地使我们能够实现比单独的智能体或单独的人类更高的性能。为此,将首先测试不同的框架、接口和协作类型。随后,将对反馈系统进行评估和相互比较,有时涉及人类和人工智能代理单独工作,有时采用混合方法。预期的结果将使由AIR开发的COGMENT平台成为该项目所用方法的核心,更广泛地被社区访问和使用。(cr)#(lf)L'avènement de l'intelligence artificielle(IA)comme approche technologique de base pour résoudre des problèmes specifiques est à la fois indéniable et remarquable.但同时,该职能主要是为了执行公民权利,而不是为了与欧盟建立一个利用人力资源的伙伴关系。考虑到人力和IA的力和力,一台合作的人力机器具有更大的发展潜力,其中一些部件具有最大的互补能力,以获得与联合国或其他机构合作不可能或很难取得的结果。此外,为了使机构在人力、方法、方法和技术的利用/操作方面以及在特定领域发挥协同作用。该项目的目标是推动技术和方法的进步,因为它体现了Au在一个合理和明智的领域中具体应用的优势。该项目是阿尔伯塔大学和JACOBB中心共同努力的结果,由AIR和Thales提供资源。Au travers de cette collaboration,seront examinées les manières dont le savoir humain peut être utilisé pour building des agents IA dans des acquisitions réels complex et sensibles.它通过所有人的理解和人与人之间的相互作用来实现,并通过对人与人之间的相互作用和人与人之间的相互作用来实现。Pour y parvenir,différents干部,接口等类型的协作seront d 'abord testés.与此同时,这些系统的反作用血清的价值和比较,意味着人类和代理人的工作本身,以及一个approche混合。Les résultats attendus permettront de rendre la platform COGMENT,décripée par AIR et Au coeur de la méthodologie utilisée pour ce projet,plus promisable accessible et utilisable par la communauté.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taylor, Matthew其他文献

Parkinsonism and Positive Dopamine Transporter Imaging in a Patient with a Novel KMT2B Variant.
  • DOI:
    10.1002/mdc3.13140
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Feuerstein, Jeanne S;Taylor, Matthew;Berman, Brian D
  • 通讯作者:
    Berman, Brian D
NICE, in Confidence: An Assessment of Redaction to Obscure Confidential Information in Single Technology Appraisals by the National Institute for Health and Care Excellence
  • DOI:
    10.1007/s40273-019-00818-0
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Bullement, Ash;Taylor, Matthew;Hatswell, Anthony James
  • 通讯作者:
    Hatswell, Anthony James
Budget impact analysis of everolimus for the treatment of hormone receptor positive, human epidermal growth factor receptor-2 negative (HER2-) advanced breast cancer in Kazakhstan
  • DOI:
    10.3111/13696998.2014.969432
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Lewis, Lily;Taylor, Matthew;Zufarovich, Abdrakhmanov Ramil
  • 通讯作者:
    Zufarovich, Abdrakhmanov Ramil
STEM Graduation Outcomes of the Rice University Emerging Scholars STEM Intervention and Summer Bridge Program
莱斯大学新兴学者STEM干预及暑期桥梁项目STEM毕业成果
  • DOI:
    10.18260/1-2--35204
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bradford, Brittany;Beier, Margaret;McSpedon, Megan;Wolf, Michael;Taylor, Matthew
  • 通讯作者:
    Taylor, Matthew
An Atypical 15q11.2 Microdeletion Not Involving SNORD116 Resulting in Prader-Willi Syndrome.
非典型15q11.2微缺失,不涉及SnORD116,导致prader-Willi综合征。
  • DOI:
    10.1155/2023/4225092
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Crenshaw, Molly M;Graw, Sharon L;Slavov, Dobromir;Boyle, Theresa A;Pique, Daniel G;Taylor, Matthew;Baker, Peter 2nd
  • 通讯作者:
    Baker, Peter 2nd

Taylor, Matthew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taylor, Matthew', 18)}}的其他基金

Leveraging Human and Agent Guidance for Improved Reinforcement Learning
利用人类和代理指导来改进强化学习
  • 批准号:
    RGPIN-2021-02538
  • 财政年份:
    2022
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Discovery Grants Program - Individual
Leveraging Human and Agent Guidance for Improved Reinforcement Learning
利用人类和代理指导来改进强化学习
  • 批准号:
    RGPAS-2021-00029
  • 财政年份:
    2022
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Leveraging Human and Agent Guidance for Improved Reinforcement Learning
利用人类和代理指导来改进强化学习
  • 批准号:
    RGPAS-2021-00029
  • 财政年份:
    2021
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Diversity in multi-agent systems for successful real-world deployments
多代理系统的多样性可实现成功的实际部署
  • 批准号:
    561116-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Alliance Grants
Leveraging Human and Agent Guidance for Improved Reinforcement Learning
利用人类和代理指导来改进强化学习
  • 批准号:
    RGPIN-2021-02538
  • 财政年份:
    2021
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Discovery Grants Program - Individual
Human-AI interactions in real-world complex uncertain environments using a comprehensive reinforcement learning framework
使用综合强化学习框架在现实世界复杂的不确定环境中进行人机交互
  • 批准号:
    554164-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Alliance Grants
Diversity in multi-agent systems for successful real-world deployments
多代理系统的多样性可实现成功的实际部署
  • 批准号:
    561116-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Alliance Grants
Isolation and identification of neuroprotective phytochemicals from tropical flora of southern Belize: An ethnobotanical study of plants traditionally used by Q'eqchi' Maya healers to treat dementia
从伯利兹南部热带植物群中分离和鉴定具有神经保护作用的植物化学物质:对 Qeqchi 玛雅治疗师传统上用于治疗痴呆症的植物进行民族植物学研究
  • 批准号:
    426963-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Influence of neuronal cholesterol biosynthesis on hedgehog signaling
神经元胆固醇生物合成对刺猬信号传导的影响
  • 批准号:
    434215-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 4.74万
  • 项目类别:
    University Undergraduate Student Research Awards
Detection of very faint transients in supernova surveys
在超新星巡天中检测非常微弱的瞬变
  • 批准号:
    414554-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 4.74万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

AI心理服务机器人的应用模式构建及推广研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于人工智能(AI)的骨科个性化康复方案设计
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于多参数AI算法和高时空分辨成像技术的难治脑疾病药物筛选方法开发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动的全球城市动物源性病毒溢出风险量化及基线数据库构建研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向多模态AI模型的自适应张量计算架构关键技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI驱动的工业微生物合成元件挖掘与产品智造
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于“治未病”理论构建AI赋能下的肥胖伴焦虑状态针灸数智化防治体系
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI 辅助药物设计姜黄素化合物的靶向结构修饰及其防治肝衰竭的成药性研究
  • 批准号:
    JCZRLH202500512
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
应用于AI芯片的先进封装TSV关键技术研发
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI代理对消费决策影响的认知神经机制研究:“人-行为-大脑”多模态数据与模型
  • 批准号:
    QN25G020009
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

AI-PigNet: The AI of social interactions for next gen smart animal breeding
AI-PigNet:下一代智能动物饲养的社交互动人工智能
  • 批准号:
    BB/Y513891/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Research Grant
Prediction of inhibitors for human-virus protein-protein interactions based on innovative AI technologies
基于创新人工智能技术预测人-病毒蛋白质-蛋白质相互作用的抑制剂
  • 批准号:
    22KJ2495
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Extended Reality Meets AI: Designing Interactions for Novel Human-AI Systems
职业:扩展现实遇见人工智能:为新型人类-人工智能系统设计交互
  • 批准号:
    2240133
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Continuing Grant
Identifying molecular traits associated with extreme human longevity using an AI based integrative approach
使用基于人工智能的综合方法识别与人类极端长寿相关的分子特征
  • 批准号:
    10745015
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
Merging artificial intelligence (AI) and pharmacometrics to elucidate gene-drug interactions linked to clopidogrel responsiveness in Caribbean Hispanic patients
融合人工智能 (AI) 和药理学,阐明与加勒比西班牙裔患者氯吡格雷反应相关的基因药物相互作用
  • 批准号:
    10626448
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
Greenland Ice Sheet - Ocean Interactions: Using satellite data and AI to understand ice dynamic change
格陵兰冰盖 - 海洋相互作用:利用卫星数据和人工智能了解冰的动态变化
  • 批准号:
    2886128
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Studentship
AI-powered cross-level cross-species omics data integration to elucidate mechanisms of EL
人工智能驱动的跨级别跨物种组学数据集成阐明 EL 机制
  • 批准号:
    10729946
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
AI-Powered Biased Ligand Design
人工智能驱动的偏向配体设计
  • 批准号:
    10637910
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
Developing unbiased AI/Deep learning pipelines to strengthen lung cancer health disparities research
开发公正的人工智能/深度学习管道以加强肺癌健康差异研究
  • 批准号:
    10841956
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
AI-based Mapping of Complex Cannabis Extracts in Pain Pathways
基于人工智能的疼痛通路中复杂大麻提取物的绘图
  • 批准号:
    10659413
  • 财政年份:
    2023
  • 资助金额:
    $ 4.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了