Visual and Machine Analytics for Environmental Monitoring

用于环境监测的视觉和机器分析

基本信息

  • 批准号:
    566261-2021
  • 负责人:
  • 金额:
    $ 10.36万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Contaminated terrestrial sites such as abandoned oilfields or chemical spills are a major environmental problem. Canada's 200,000+ contaminated sites cause health problems through soil and water pollution, and represent a multi-billion dollar environmental and economic liability. Contaminated sites must be remediated to remove pollutants, and partner Environmental Material Science (EMS) has developed a novel bio-remediation approach that is far more effective and far less expensive than current methods. A key element to their approach is monitoring current levels of contamination much more frequently than other methods, in order to allow stakeholders to determine whether remediation is working correctly, and to predict when a site will come into compliance. The information gathered from sensors at the contaminated site is used in models of the contaminated site, and in visualizations that assist stakeholders in making decisions. However, current modeling and visualization techniques are largely untested in the environmental context - and the large number of variables, the difficulties in generating accurate models, the multi-dimensional uncertainty present at each state, and the many different stakeholders present new and difficult challenges for analytics. This project will develop analytics techniques that can succeed in the context of contaminated-site monitoring and remediation. Our main outcome will be novel software tools that implement new modeling, analytics, and visualization techniques, that will substantially improve the effectiveness of EMS's remediation solutions in real-world operation, leading to much faster remediation of Canada's contaminated sites. We have three research objectives: sensor analytics to improve interpretation, aggregation, and characterization of site sensor data; predictive models that are more accurate in highly-uncertain domains; and visualization techniques that represent data, models, and uncertainty to enable multiple stakeholders to make better decisions about contaminated sites.
废弃油田或化学品泄漏等受污染的陆地场地是一个主要的环境问题。加拿大有20多万个受污染的场地,通过土壤和水污染造成健康问题,并造成数十亿美元的环境和经济损失。受污染的场地必须进行修复以去除污染物,合作伙伴环境材料科学(EMS)开发了一种新的生物修复方法,比现有方法更有效,成本更低。他们的方法的一个关键要素是比其他方法更频繁地监测当前的污染水平,以便让利益相关者确定补救措施是否正常工作,并预测场地何时符合要求。从污染场地的传感器收集的信息用于污染场地的模型和可视化,以帮助利益相关者做出决策。然而,目前的建模和可视化技术在很大程度上没有在环境背景下进行测试-大量的变量,生成准确模型的困难,每个状态存在的多维不确定性以及许多不同的利益相关者为分析带来了新的和困难的挑战。 该项目将开发分析技术,可以在污染现场监测和修复的背景下取得成功。我们的主要成果将是新的软件工具,实现新的建模,分析和可视化技术,这将大大提高EMS的修复解决方案在现实世界中的有效性,从而更快地修复加拿大的污染场地。我们有三个研究目标:传感器分析,以改善现场传感器数据的解释,汇总和表征;在高度不确定的领域更准确的预测模型;以及表示数据,模型和不确定性的可视化技术,使多个利益相关者能够对污染场地做出更好的决策。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gutwin, Carl其他文献

Situation-Specific Models of Color Differentiation
The effects of interaction sequencing on user experience and preference
A Design Framework for Awareness Cues in Distributed Multiplayer Games
分布式多人游戏中意识线索的设计框架
Visualization Tools for Genomic Conservation.
Modelling and quantifying the behaviours of students in lecture capture environments
  • DOI:
    10.1016/j.compedu.2014.03.002
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    12
  • 作者:
    Brooks, Christopher;Erickson, Graham;Gutwin, Carl
  • 通讯作者:
    Gutwin, Carl

Gutwin, Carl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gutwin, Carl', 18)}}的其他基金

Enabling Expertise: Raising the Performance Ceiling for Touch Devices
启用专业知识:提高触摸设备的性能上限
  • 批准号:
    RGPIN-2017-05536
  • 财政年份:
    2021
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Expertise: Raising the Performance Ceiling for Touch Devices
启用专业知识:提高触摸设备的性能上限
  • 批准号:
    RGPIN-2017-05536
  • 财政年份:
    2020
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Expertise: Raising the Performance Ceiling for Touch Devices
启用专业知识:提高触摸设备的性能上限
  • 批准号:
    RGPIN-2017-05536
  • 财政年份:
    2019
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Expertise: Raising the Performance Ceiling for Touch Devices
启用专业知识:提高触摸设备的性能上限
  • 批准号:
    RGPIN-2017-05536
  • 财政年份:
    2018
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling Expertise: Raising the Performance Ceiling for Touch Devices
启用专业知识:提高触摸设备的性能上限
  • 批准号:
    RGPIN-2017-05536
  • 财政年份:
    2017
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual
Improving local network performance for real-time multi-player games
提高实时多人游戏的本地网络性能
  • 批准号:
    490722-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Engage Grants Program
Improving Quality of Interaction in Distributed Real-Time Groupware
提高分布式实时群件中的交互质量
  • 批准号:
    203255-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual
Gesture-Based Definition of User Gameplay Experiences
基于手势的用户游戏体验定义
  • 批准号:
    484329-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Engage Grants Program
Improving Quality of Interaction in Distributed Real-Time Groupware
提高分布式实时群件中的交互质量
  • 批准号:
    203255-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual
Improving Quality of Interaction in Distributed Real-Time Groupware
提高分布式实时群件中的交互质量
  • 批准号:
    203255-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
  • 批准号:
    10827649
  • 财政年份:
    2023
  • 资助金额:
    $ 10.36万
  • 项目类别:
SBIR Phase I: Predictive Analytics and Machine Learning Modeling for New Patient Cancer Referrals
SBIR 第一阶段:针对新癌症患者转诊的预测分析和机器学习建模
  • 批准号:
    2304498
  • 财政年份:
    2023
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
Conference: Foundations of Process/Product Analytics and Machine learning (FOPAM 2023)
会议:流程/产品分析和机器学习的基础 (FOPAM 2023)
  • 批准号:
    2303860
  • 财政年份:
    2023
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
developing and validating customized machine learning and data analytics methods for mining cricket
开发和验证采矿板球的定制机器学习和数据分析方法
  • 批准号:
    2885595
  • 财政年份:
    2023
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Studentship
CAREER: Machine-centered Cyberinfrastructure for Panoramic Video Analytics in Science and Engineering Monitoring
职业:科学和工程监控中用于全景视频分析的以机器为中心的网络基础设施
  • 批准号:
    2144764
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Continuing Grant
REU Site: Undergraduate Research Experiences in Machine Learning, Analytics, and Augmented Reality for Smart and Connected Health
REU 网站:智能互联健康机器学习、分析和增强现实方面的本科生研究经验
  • 批准号:
    2150135
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
Analytics & Machine-learning for Maternal-health Interventions (AMMI): A Cross-CTSA Collaboration
分析
  • 批准号:
    10447984
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
OAC Core: A Machine Learning Assisted Visual Analytics Approach for Understanding Flow Surfaces
OAC Core:一种用于理解流表面的机器学习辅助视觉分析方法
  • 批准号:
    2104158
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
Visual and Machine Analytics for Environmental Monitoring
用于环境监测的视觉和机器分析
  • 批准号:
    566261-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Alliance Grants
CAREER: Rethink and Redesign of Analytics Databases for Machine Learning Model Serving
职业:重新思考和重新设计用于机器学习模型服务的分析数据库
  • 批准号:
    2144923
  • 财政年份:
    2022
  • 资助金额:
    $ 10.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了