Deep Learning-Based System for Monitoring Pavement Distresses
基于深度学习的路面病害监测系统
基本信息
- 批准号:571245-2022
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Idea to Innovation
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Maintaining highway and airport pavement quality at an acceptable level is challenging for transportation authorities. Manual, semi-automated and automated methods have been developed to evaluate pavement distresses, such as cracks, viscoplastic deformation, and surface defects. However, the manual process is costly, labour-intensive, and time-consuming and is prone to human error. The semi-automated and automated methods lack accuracy and involve high costs. Furthermore, road and airport authorities lack the screening tools to make real-time evaluations associated with simultaneous visualizations. Our proposed automated vision-based system overcomes these limitations by detecting and evaluating all pavement distresses mentioned above more efficiently and accurately. The pavement distress monitoring system includes two parts: hardware and software. The hardware is an off-the-shelf camera with certain features used for image data collection. The software is a Python-based code that simultaneously analyzes the collected images using computer vision, image processing, and deep learning algorithms to detect and assess pavement distresses. The generated outputs include pavement distress type, dimensions, severity, and location. The proposed product can be installed at the back of a moving vehicle or on a drone. It can capture images remotely at different moving speeds and accomplishes the assessment process with reasonable cost and without traffic interruption. In addition, this technology can scan all road lanes by capturing successive images with just one passage along the road of interest and can be used during both day and nighttime. Based on our primary market size estimation, the serviceable available market is about 60,000 municipalities, airports, and provincial governments, and capturing 10% of this market amounts to 6,000 sales. Thus, given typical product values, the annual income might reach US$21M. Using the NSERC fund, we will work on our product market assessment to validate our business model elements and create a more realistic and reasonable development process in product specifications and capabilities from the customer's point of view.
将高速公路和机场路面质量保持在可接受的水平对交通部门来说是一项挑战。人工,半自动化和自动化的方法已经开发出来,以评估路面损坏,如裂缝,粘塑性变形,和表面缺陷。然而,手动过程是昂贵的、劳动密集型的和耗时的,并且容易出现人为错误。半自动化和自动化方法缺乏准确性并且涉及高成本。此外,道路和机场当局缺乏筛选工具,无法进行与同时可视化相关的实时评估。我们提出的自动视觉系统克服了这些限制,检测和评估所有路面损坏上述更有效,更准确。路面病害监测系统包括硬件和软件两部分。硬件是一个现成的相机,具有用于图像数据收集的某些功能。该软件是一个基于Python的代码,可以使用计算机视觉、图像处理和深度学习算法同时分析收集到的图像,以检测和评估路面损坏。生成的输出包括路面损坏类型、尺寸、严重程度和位置。拟议的产品可以安装在移动车辆的后部或无人机上。它可以在不同的移动速度下远程捕获图像,并以合理的成本和不中断交通的情况下完成评估过程。此外,该技术可以通过捕获沿着感兴趣的道路沿着的仅一个通道的连续图像来扫描所有道路车道,并且可以在白天和夜间使用。根据我们的主要市场规模估计,可服务的市场约为60,000个市政当局,机场和省级政府,占据该市场的10%相当于6,000个销售额。因此,考虑到典型的产品价值,年收入可能达到2100万美元。利用NSERC基金,我们将致力于我们的产品市场评估,以验证我们的商业模式元素,并从客户的角度出发,在产品规格和功能方面创建一个更现实、更合理的开发流程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Easa, Said其他文献
Using fixed-parameter and random-parameter ordered regression models to identify significant factors that affect the severity of drivers' injuries in vehicle-train collisions
- DOI:
10.1016/j.aap.2017.07.017 - 发表时间:
2017-10-01 - 期刊:
- 影响因子:5.9
- 作者:
Dabbour, Essam;Easa, Said;Haider, Murtaza - 通讯作者:
Haider, Murtaza
Proposed collision warning system for right-turning vehicles at two-way stop-controlled rural intersections
- DOI:
10.1016/j.trc.2014.02.019 - 发表时间:
2014-05-01 - 期刊:
- 影响因子:8.3
- 作者:
Dabbour, Essam;Easa, Said - 通讯作者:
Easa, Said
Easa, Said的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Easa, Said', 18)}}的其他基金
Advancing Road Safety and Geometric Design for Autonomous and Connected Vehicles
推进自动驾驶和联网车辆的道路安全和几何设计
- 批准号:
RGPIN-2020-04667 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Advancing Road Safety and Geometric Design for Autonomous and Connected Vehicles
推进自动驾驶和联网车辆的道路安全和几何设计
- 批准号:
RGPIN-2020-04667 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Advancing Road Safety and Geometric Design for Autonomous and Connected Vehicles
推进自动驾驶和联网车辆的道路安全和几何设计
- 批准号:
RGPIN-2020-04667 - 财政年份:2020
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Advancing performance-based highway geometric design
推进基于性能的公路几何设计
- 批准号:
RGPIN-2015-06055 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Mobile Real-Time Machine for Simulation and Testing of Autonomous Vehicle Technologies
用于自动驾驶汽车技术仿真和测试的移动实时机
- 批准号:
RTI-2020-00724 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Research Tools and Instruments
Development of Optical Sensing Detection System for Monitoring of Rutting and Pavement Assessment
车辙监测和路面评估光学传感检测系统的开发
- 批准号:
544072-2019 - 财政年份:2019
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Advancing performance-based highway geometric design
推进基于性能的公路几何设计
- 批准号:
RGPIN-2015-06055 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Advanced Eye Tracking Equipment for Understanding Driver Behaviour
用于了解驾驶员行为的先进眼动追踪设备
- 批准号:
RTI-2018-00476 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Research Tools and Instruments
Development of In-Vehicle Collision Warning System for Two-Lane Highways Considering Driver Characteristics
考虑驾驶员特征的两车道高速公路车载碰撞预警系统的开发
- 批准号:
520330-2017 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Engage Grants Program
Advancing performance-based highway geometric design
推进基于性能的公路几何设计
- 批准号:
RGPIN-2015-06055 - 财政年份:2017
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant
DeepMARA - Deep Reinforcement Learning based Massive Random Access Toward Massive Machine-to-Machine Communications
DeepMARA - 基于深度强化学习的大规模随机访问实现大规模机器对机器通信
- 批准号:
EP/Y028252/1 - 财政年份:2024
- 资助金额:
$ 1.46万 - 项目类别:
Fellowship
Optimization-based Implicit Deep Learning, Theory and Applications
基于优化的隐式深度学习、理论与应用
- 批准号:
2309810 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Continuing Grant
Security Evaluation Method Against Deep-Learning-Based Side-Channel Attacks Exploiting Physical Behavior of Cryptographic Hardware
针对利用密码硬件物理行为的基于深度学习的侧信道攻击的安全评估方法
- 批准号:
23K11102 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-creation between content-generating AI and humans based on deep learning
基于深度学习的内容生成人工智能与人类的共同创造
- 批准号:
23K04201 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spatial Calibration of Head-Mounted Displays Based on Implicit Function Representation of Light Fields Using Deep Learning
基于深度学习光场隐式函数表示的头戴式显示器空间校准
- 批准号:
23K16920 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deep learning-based prediction model for intraoperative neuromuscular blockade
基于深度学习的术中神经肌肉阻滞预测模型
- 批准号:
23K14406 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
- 批准号:
EP/X036960/1 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Research Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
- 批准号:
2243776 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Standard Grant














{{item.name}}会员




