Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
基本信息
- 批准号:RGPIN-2019-04737
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The scale of research and application of deep learning continues to accelerate. In our work and our daily lives, we see more dependence on these systems for making predictions. In some cases, they are automated, and in others, they involve humans "in-the-loop". Unfortunately, these systems can fail silently. Examples of failure include erroneous yet highly confident predictions, as well as susceptibility to adversarial attacks and so-called fooling images. One way to build more fault-tolerant machine learning systems is to calibrate their confidence or uncertainty measures for interpretation by humans or other systems. Such measures are useful, for example, to refer data points to a human expert or another system for further processing. Proposing different techniques for estimating confidence or uncertainty is an active area of research. Most approaches aim to either estimate or re-calibrate a confidence measure after training; however, there are many uses for confidence throughout learning. Examples include choosing additional data points for annotation (active learning), selecting which examples to visit next (self-paced learning), and learning with a reject option. I propose a research program that will focus on novel and efficient ways of expressing, quantifying, and channeling confidence, both in training and deploying machine learning systems. The long-term goal is toward systems with more responsibility in their autonomy and improved collaboration with humans. It will span three activities. Modulating the learning experience We will compare and develop different confidence measures to: 1) enable a system to optimally ask for "hints" from an oracle; 2) modulate the type and amount of data augmentation applied to an input; and 3) choose among auxiliary tasks. Our goal is to learn faster with less human-labeled examples. Confidence and conditional computation We will investigate dynamic network architectures whose processing depends on the input through confidence estimates. For example, during training, a simple example could require very little computation, a moderate example could require more computation, and a difficult example could be ignored and revisited at a future epoch. Our goal is to optimize computation during training and deployment. Evaluation and cross-discipline collaboration In reporting performance, typical machine learning benchmarks do not consider that some tasks are more costly than others. Moreover, confidence estimates are rarely evaluated directly: they use proxies like out-of-distribution or adversarial example detection. We will work with neuroscientists to assess methods for quantifying confidence in human decision making and gain a better understanding of its role in human learning. We will develop a standard benchmark for the use of confidence in machine learning. This research program will develop more robust, efficient, and transparent deep learning models designed to improve life.
深度学习的研究和应用规模不断加快。在我们的工作和日常生活中,我们看到更多的依赖这些系统来进行预测。在某些情况下,它们是自动化的,而在其他情况下,它们涉及人类的“循环”。不幸的是,这些系统可能会悄无声息地失败。失败的例子包括错误但高度自信的预测,以及对对抗性攻击和所谓的愚弄图像的敏感性。构建更容错的机器学习系统的一种方法是校准它们的置信度或不确定性度量,以供人类或其他系统解释。例如,这些措施对于将数据点提交给人类专家或另一系统进行进一步处理是有用的。提出不同的技术来估计置信度或不确定性是一个活跃的研究领域。大多数方法的目标是在训练后估计或重新校准置信度;然而,在整个学习过程中,置信度有许多用途。示例包括选择附加数据点进行注释(主动学习),选择接下来访问哪些示例(自定进度学习)以及使用拒绝选项进行学习。我提出了一个研究计划,重点关注在训练和部署机器学习系统时表达、量化和引导信心的新颖有效的方法。长期目标是使系统在自主性方面承担更多责任,并改善与人类的协作。它将包括三项活动。调节学习体验我们将比较和开发不同的置信度度量,以:1)使系统能够最佳地从神谕中请求“提示”; 2)调节应用于输入的数据增强的类型和数量;以及3)在辅助任务中进行选择。我们的目标是用更少的人工标记样本更快地学习。置信度和条件计算我们将研究动态网络架构,其处理取决于通过置信度估计的输入。例如,在训练过程中,一个简单的例子可能需要很少的计算,一个中等的例子可能需要更多的计算,而一个困难的例子可能会被忽略,并在未来的时间重新访问。我们的目标是在训练和部署过程中优化计算。在报告性能时,典型的机器学习基准测试不会考虑某些任务的成本高于其他任务。此外,置信度估计很少直接评估:它们使用代理,如分布外或对抗性示例检测。我们将与神经科学家合作,评估量化人类决策信心的方法,并更好地了解其在人类学习中的作用。我们将为机器学习中的信心使用开发一个标准基准。该研究计划将开发更强大,高效和透明的深度学习模型,旨在改善生活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taylor, Graham其他文献
How to catch all those mutations--the report of the third Human Variome Project Meeting, UNESCO Paris, May 2010.
- DOI:
10.1002/humu.21379 - 发表时间:
2010-12 - 期刊:
- 影响因子:3.9
- 作者:
Kohonen-Corish, Maija R. J.;Al-Aama, Jumana Y.;Auerbach, Arleen D.;Axton, Myles;Barash, Carol Isaacson;Bernstein, Inge;Beroud, Christophe;Burn, John;Cunningham, Fiona;Cutting, Garry R.;den Dunnen, Johan T.;Greenblatt, Marc S.;Kaput, Jim;Katz, Michael;Lindblom, Annika;Macrae, Finlay;Maglott, Donna;Moeslein, Gabriela;Povey, Sue;Ramesar, Raj;Richards, Sue;Seminara, Daniela;Sobrido, Maria-Jesus;Tavtigian, Sean;Taylor, Graham;Vihinen, Mauno;Winship, Ingrid;Cotton, Richard G. H. - 通讯作者:
Cotton, Richard G. H.
Automatic moth detection from trap images for pest management
- DOI:
10.1016/j.compag.2016.02.003 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:8.3
- 作者:
Ding, Weiguang;Taylor, Graham - 通讯作者:
Taylor, Graham
Feasibility of mass cytometry proteomic characterisation of circulating tumour cells in head and neck squamous cell carcinoma for deep phenotyping.
- DOI:
10.1038/s41416-023-02428-2 - 发表时间:
2023-11 - 期刊:
- 影响因子:8.8
- 作者:
Payne, Karl;Brooks, Jill;Batis, Nikolaos;Khan, Naeem;El-Asrag, Mohammed;Nankivell, Paul;Mehanna, Hisham;Taylor, Graham - 通讯作者:
Taylor, Graham
Deep learning for supervised classification of spatial epidemics
- DOI:
10.1016/j.sste.2018.08.002 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:3.4
- 作者:
Augusta, Carolyn;Deardon, Rob;Taylor, Graham - 通讯作者:
Taylor, Graham
Prevalence of infection by human T Cell lymphotropic viruses (HTLV-1/2) in adult population in Vitória-ES.
- DOI:
10.1016/j.bjid.2021.101631 - 发表时间:
2021-09 - 期刊:
- 影响因子:3.4
- 作者:
Orletti, Maria P. S.;Assone, Tatiane;Sarnaglia, Glenia Daros;Martins, Marina Lobato;Rosadas, Carolina;Casseb, Jorge;Taylor, Graham;Ferreira-Filho, Joaquim B.;Pereira, Fausto E. L.;Miranda, Angelica Espinosa - 通讯作者:
Miranda, Angelica Espinosa
Taylor, Graham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taylor, Graham', 18)}}的其他基金
Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
- 批准号:
RGPIN-2019-04737 - 财政年份:2022
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
- 批准号:
DGDND-2019-04737 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
- 批准号:
DGDND-2019-04737 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
- 批准号:
RGPAS-2019-00079 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
- 批准号:
RGPIN-2019-04737 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
- 批准号:
RGPAS-2019-00079 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Yielding and Exploiting Confidence in Deep Learning
培养和利用深度学习的信心
- 批准号:
RGPIN-2019-04737 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 3.5万 - 项目类别:
Studentship
Exploiting JWST to Unveil Our Icy Universe
利用 JWST 揭示我们的冰冷宇宙
- 批准号:
2906887 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Studentship
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
- 批准号:
EP/Z000599/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
New directions in piezoelectric phononic integrated circuits: exploiting field confinement (SOUNDMASTER)
压电声子集成电路的新方向:利用场限制(SOUNDMASTER)
- 批准号:
EP/Z000688/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
Exploiting protein import to interrogate energy transduction through the bacterial cell envelope
利用蛋白质输入来询问通过细菌细胞包膜的能量转导
- 批准号:
BB/X016366/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
Exploiting Controlled Environments for the Development of Optimised Cannabis Sativa Phenotypes for Pharmaceutical Applications - CE-CannPharm
利用受控环境开发用于制药应用的优化大麻表型 - CE-CannPharm
- 批准号:
BB/Z514470/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
- 批准号:
EP/Y033981/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Continuing Grant