Graded algebras and applications

分级代数及其应用

基本信息

  • 批准号:
    RGPIN-2019-05695
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Group gradings of algebras play an important role in mathematics. Classical example are Cartan decomposition of classical Lie algebras, and Cayley-Dickson gradings of composition algebras.  Both are widely used in Lie Theory, a tool of many working in Pure and Applied Mathematics and in Mathematical Physics. Gradings also provide deformations of algebras, important in searches of objects describing physical models. Our work on the classification of gradings on simple algebras started more than two decades ago, and now involves specialists in at least 10 countries of the world. In the case of algebraically closed fields, the classification is essentially complete in the case of finite-dimensional algebras. The methods include classical algebraic groups but also approaches suggested  my colleagues and myself, involving Hopf algebras and algebraic group schemes. The technique of so called functional identities, developed jointly with M. Bresar, allowed us to handle infinite-dimensional algebras. In the case of arbitrary fields, one needs to know graded-division algebras, since graded-simple algebras can be represented by linear operators of graded vector spaces over graded-division algebras. In the most "practical" case of real numbers, our recent papers with M. Kochetov, A. Rodrigo-Escudero and M. Zaicev provide a good basis for the theory of real graded-simple algebras, with possible applications to Differential Geometry. We have already started work on the gradings of algebras over arbitrary fields, and fields themselves; rich theory of fields and division algebras, will enable us to enrich the theory with new tools and interesting examples.  An important application is the graded modules over Lie algebras. Recently, A. Elduque and M. Kotchetov have published results on the possibility of grading finite-dimensional irreducible modules of classical simple Lie algebras. Now, with M. Kochetov and A. Shihadeh, we work on providing explicit grading to those representations and on infinite-dimensional representations. Providing gradings will clarify the structure of these modules and will be useful  for those working in this popular area.  One more directions is the theory of PI-algebras. For most simple algebras, their ordinary identities are not known. Graded identities are much easier, yet they define ordinary identities. In a work with F. Yasumura, we proved that graded-simple finite-dimensional algebras over an algebraically closed field, with the same graded identities, are isomorphic as graded algebras. We will be working on the extension of this to other situations and to the embeddings of algebras, in place of isomorphisms. In our work with Susan Montgomery, we use our extensive knowledge of the gradings on simple algebras to the study of actions of Hopf algebras, with sufficiently large groups of group-like elements. Starting with Taft algebras and their Drinfeld doubles, we will explore new situations where this approach works.
代数的群分次在数学中起着重要的作用。经典的例子是经典李代数的Cartan分解和复合代数的Cayley-Dickson分次。这两个都被广泛应用于李理论,这是许多纯粹数学和应用数学以及数学物理工作的工具。分级还提供代数的变形,这在搜索描述物理模型的对象时很重要。我们在简单代数的分级分类方面的工作始于二十多年前,现在涉及世界上至少10个国家的专家。在代数闭域的情况下,分类在有限维代数的情况下基本上是完全的。方法包括经典的代数群,但也建议我的同事和我自己的方法,涉及霍普夫代数和代数群计划。与M.布雷萨,使我们能够处理无限维代数。 在任意域的情况下,需要知道分次除代数,因为分次单代数可以由分次除代数上的分次向量空间的线性算子表示。在真实的数的最“实际”的情况下,我们最近与M. Kochetov,A. Rodrigo-Escudero和M. Zaicev为真实的分次单代数理论提供了一个很好的基础,并可能应用于微分几何。我们已经开始研究任意域上的代数的分次和域本身;丰富的域和除代数理论将使我们能够用新的工具和有趣的例子来丰富理论。一个重要的应用是李代数上的分次模。最近,A. Elduque和M. Kotchetov已经发表了结果的可能性分级有限维不可约模的经典单李代数。现在,与M。Kochetov和A. Shihadeh,我们致力于为这些表示和无限维表示提供明确的分级。提供分级将澄清这些模块的结构,并将有助于那些在这个流行的领域工作。另一个方向是PI-代数理论。对于大多数简单代数,它们的普通恒等式是未知的。分次恒等式要简单得多,但它们定义了普通恒等式。在与F。Yasumura等人证明了代数闭域上具有相同分次恒等式的分次单有限维代数与分次代数同构。我们将致力于将其推广到其他情况,以及代数的嵌入,以代替同构。 在我们的工作与苏珊蒙哥马利,我们使用我们广泛的知识分级简单代数的研究行动的霍普夫代数,足够大的群体的组样元素。从塔夫脱代数和它们的Drinfeld双开始,我们将探索这种方法起作用的新情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bahturin, Yuri其他文献

Nilpotent algebras, implicit function theorem, and polynomial quasigroups
幂零代数、隐函数定理和多项式拟群
  • DOI:
    10.1016/j.jalgebra.2023.05.024
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Bahturin, Yuri;Olshanskii, Alexander
  • 通讯作者:
    Olshanskii, Alexander

Bahturin, Yuri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bahturin, Yuri', 18)}}的其他基金

Graded algebras and applications
分级代数及其应用
  • 批准号:
    RGPIN-2019-05695
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Graded algebras and applications
分级代数及其应用
  • 批准号:
    RGPIN-2019-05695
  • 财政年份:
    2020
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Graded algebras and applications
分级代数及其应用
  • 批准号:
    RGPIN-2019-05695
  • 财政年份:
    2019
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, Rings, Lie and Hopf Algebras
群、环、李代数和 Hopf 代数
  • 批准号:
    RGPIN-2014-04606
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, Rings, Lie and Hopf Algebras
群、环、李代数和 Hopf 代数
  • 批准号:
    RGPIN-2014-04606
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, Rings, Lie and Hopf Algebras
群、环、李代数和 Hopf 代数
  • 批准号:
    RGPIN-2014-04606
  • 财政年份:
    2016
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, Rings, Lie and Hopf Algebras
群、环、李代数和 Hopf 代数
  • 批准号:
    RGPIN-2014-04606
  • 财政年份:
    2015
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, Rings, Lie and Hopf Algebras
群、环、李代数和 Hopf 代数
  • 批准号:
    RGPIN-2014-04606
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, rings, lie and hopf algebras
群、环、李代数和 Hopf 代数
  • 批准号:
    227060-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Groups, rings, lie and hopf algebras
群、环、李代数和 Hopf 代数
  • 批准号:
    227060-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
  • 批准号:
    2340465
  • 财政年份:
    2024
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Continuing Grant
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
  • 批准号:
    2154637
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Combinatorial Hopf Algebras and Applications
组合 Hopf 代数及其应用
  • 批准号:
    RGPIN-2018-05821
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigidity for von Neumann Algebras and Applications
冯诺依曼代数及其应用的刚性
  • 批准号:
    2153805
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Graded algebras and applications
分级代数及其应用
  • 批准号:
    RGPIN-2019-05695
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
  • 批准号:
    RGPIN-2019-03923
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
  • 批准号:
    RGPIN-2019-06170
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics of finite-dimensional algebras, with applications to scattering amplitudes
有限维代数的组合及其在散射振幅中的应用
  • 批准号:
    RGPIN-2022-03960
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Theory and applications of operator systems and operator algebras
算子系统和算子代数的理论与应用
  • 批准号:
    RGPIN-2019-03923
  • 财政年份:
    2021
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了