Advanced Feature Semantics Modeling Methodology and Technology Development in a Smart Product and Process Engineering Regime

智能产品和过程工程体系中的高级特征语义建模方法和技术开发

基本信息

  • 批准号:
    RGPIN-2020-03956
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This application proposes a continued long term research program to further advance the unified feature theory established by the applicant so far. The objective is to develop a core engineering informatics technology so that it can systematically support serious industrial software package development. Essentially, the applicant's team will demonstrate the functionality for a knowledge-rich future generation design and manufacturing information system with a set of prototype modules in a coherent and generic framework. The challenging core mechanism problems addressed are complex surface feature modeling, multi-physics manufacturing process optimization and advanced material design optimization. First, feature-based surface modeling embedded with advanced geometry processing methods, will realize rapid complex and precise surface feature creation, modification and manipulation in product modeling and further deep processing, such as mesh generation in mechanical dynamics analyses. The significant applications are in those industries where generative parametric design of complex surface product or component bodies are constantly required in a compressed time frame. Second, a digital-twin method for complex manufacturing process modeling under the Industry 4.0 framework is to be developed. Physics phenomena are to be represented as a series of interaction features with driving parameters. The cyclic evolving behaviors or performance of designed processes are to be comprehensively represented and managed by a generic, flexible, and scalable method in a coherent system across companies and industries. Third, further investigation will be carried out on computational and function-driven material topology design and optimization for non-traditional material structures with varying gradient and composite constraints. The outcome will offer self-defining material topological features that support customized material requirements from product and process engineering. The targeted applications are in aerospace, energy, construction and manufacturing industries in Canada. High quality personnel training and publishing high quality papers are planned. Students will develop pilot algorithms and prototype modules with the application prospects for industry. Eventually, industry can enhance product innovation and competitiveness on a significant scale attributing to knowledge reuse, engineering method adoption, information sharing, multi-disciplinary collaboration as well as engineering lifecycle support. Technically, this research proposal supports "phenomena-engineering-product-process-material" informatics modeling cycle with open interoperability and user compatibility. The outcome algorithms, systematic modular architecture and semantic models will be useful for new generation engineering knowledge processing technology that can support the lifecycle of virtual product development and manufacturing processes with innovative new materials.
本申请提出了一项持续的长期研究计划,以进一步推进申请人迄今为止建立的统一特征理论。其目标是开发一种核心工程信息技术,使其能够系统地支持严重的工业软件包开发。从本质上讲,申请人的团队将展示一个知识丰富的未来一代设计和制造信息系统的功能,在一个连贯和通用的框架中的一组原型模块。解决的具有挑战性的核心机制问题是复杂的表面特征建模,多物理场制造工艺优化和先进的材料设计优化。首先,基于特征的曲面造型技术与先进的几何处理方法相结合,将实现产品造型中复杂曲面特征的快速、精确创建、修改和操作,以及进一步的深加工,如机械动力学分析中的网格生成。重要的应用是在那些行业中,复杂的表面产品或组件机构的生成参数化设计不断需要在压缩的时间框架。 第二,在工业4.0框架下开发了一种用于复杂制造过程建模的数字孪生方法。物理现象被描述为一系列具有驱动参数的相互作用特征。设计过程的循环演变行为或性能将在跨公司和行业的连贯系统中通过通用,灵活和可扩展的方法进行全面表示和管理。 第三,将进一步研究计算和功能驱动的材料拓扑设计和优化的非传统材料结构与变化的梯度和复合约束。其成果将提供自定义的材料拓扑特征,支持产品和工艺工程的定制材料要求。目标应用是加拿大的航空航天、能源、建筑和制造业。高质量的人才培养和出版高质量的论文计划。学生将开发具有工业应用前景的试验算法和原型模块。通过知识重用、工程方法的采用、信息共享、多学科协作以及工程生命周期支持,工业可以显著提高产品创新能力和竞争力。 在技术上,该研究方案支持“现象-工程-产品-工艺-材料”信息学建模循环,具有开放的互操作性和用户兼容性。结果算法,系统的模块化架构和语义模型将是有用的新一代工程知识处理技术,可以支持虚拟产品开发和制造过程的生命周期与创新的新材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ma, Yongsheng其他文献

Identification and characterization of bicistronic speB and prsA gene expression in the group A streptococcus
  • DOI:
    10.1128/jb.01059-06
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ma, Yongsheng;Bryant, Amy E.;Stevens, Dennis L.
  • 通讯作者:
    Stevens, Dennis L.
A survey of manufacturing oriented topology optimization methods
  • DOI:
    10.1016/j.advengsoft.2016.07.017
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Liu, Jikai;Ma, Yongsheng
  • 通讯作者:
    Ma, Yongsheng
Force calculation using analytical and CAE methods for thin-blade slotting process
  • DOI:
    10.1080/23311916.2017.1412106
  • 发表时间:
    2017-12-14
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Kordestany, Yazdan;Ma, Yongsheng
  • 通讯作者:
    Ma, Yongsheng
Feature-based intelligent system for steam simulation using computational fluid dynamics
  • DOI:
    10.1016/j.aei.2018.08.011
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Li, Lei;Lange, Carlos F.;Ma, Yongsheng
  • 通讯作者:
    Ma, Yongsheng
Association of design and computational fluid dynamics simulation intent in flow control product optimization

Ma, Yongsheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ma, Yongsheng', 18)}}的其他基金

Advanced Feature Semantics Modeling Methodology and Technology Development in a Smart Product and Process Engineering Regime
智能产品和过程工程体系中的高级特征语义建模方法和技术开发
  • 批准号:
    RGPIN-2020-03956
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Feature Semantics Modeling Methodology and Technology Development in a Smart Product and Process Engineering Regime
智能产品和过程工程体系中的高级特征语义建模方法和技术开发
  • 批准号:
    RGPIN-2020-03956
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Feature-based Product and Process Modeling and for Energy Engineering
用于能源工程的基于特征的统一产品和过程建模
  • 批准号:
    RGPIN-2014-05641
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Integration of ERP and an optimal plan for inventory layout
ERP集成和库存布局优化计划
  • 批准号:
    526379-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Optimal design of facility layout for manufacturing system
制造系统设施布局优化设计
  • 批准号:
    514473-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Unified Feature-based Product and Process Modeling and for Energy Engineering
用于能源工程的基于特征的统一产品和过程建模
  • 批准号:
    RGPIN-2014-05641
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Feature-based Product and Process Modeling and for Energy Engineering
用于能源工程的基于特征的统一产品和过程建模
  • 批准号:
    RGPIN-2014-05641
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Integrated design and quality conformance of parts manufactured via fused deposition modeling
通过熔融沉积建模制造的零件的集成设计和质量一致性
  • 批准号:
    491751-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Grants Program
Unified Feature-based Product and Process Modeling and for Energy Engineering
用于能源工程的基于特征的统一产品和过程建模
  • 批准号:
    RGPIN-2014-05641
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Feature-based Product and Process Modeling and for Energy Engineering
用于能源工程的基于特征的统一产品和过程建模
  • 批准号:
    RGPIN-2014-05641
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust Feature Extraction for Visual Localization using Map-based 360-degree Image Transformation
使用基于地图的 360 度图像转换进行视觉定位的鲁棒特征提取
  • 批准号:
    24K20872
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Self-supervised feature learning for rapid processing of marine imagery
用于快速处理海洋图像的自监督特征学习
  • 批准号:
    LP220200949
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Linkage Projects
Feature extraction of reaction route map by topological data analysis and its application to reactivity comparison, classification, and prediction
拓扑数据分析反应路线图特征提取及其在反应性比较、分类和预测中的应用
  • 批准号:
    23H01915
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Knockoff Feature Selection Techniques for Robust Inference in Supervised and Unsupervised Learning
监督和无监督学习中鲁棒推理的仿冒特征选择技术
  • 批准号:
    2310955
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Randomized Feature Methods for Modeling and Dynamics: Theory and Algorithms
协作研究:建模和动力学的随机特征方法:理论和算法
  • 批准号:
    2331033
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Feature selection in several challenging directions
几个具有挑战性的方向的特征选择
  • 批准号:
    2310668
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234921
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Investigating tRNA biology as a prognostic and oncogenic feature in pancreatic adenocarcinoma
研究 tRNA 生物学作为胰腺腺癌的预后和致癌特征
  • 批准号:
    10749469
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了