Geometry of moduli spaces and of integrable systems

模空间和可积系统的几何

基本信息

  • 批准号:
    RGPIN-2020-04060
  • 负责人:
  • 金额:
    $ 2.7万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Geometry has played an ever increasing role in mathematics and theoretical physics over the past few years: encoding into a geometric object a solution to a partial differential equation, or a physical field, highlights its symmetries, shows which operations are natural and which are not, and generally gives one an idea of what is going on. One can think here of the role of a connection and its curvature in encoding electromagnetic fields and Maxwell's equations, or of the role of strings and their world sheet surfaces in understanding particle physics. A more applied set of problems with extensive geometric ramifications have been the various shallow water wave equations and their solutions, linked to infinite dimensional Hamiltonian systems. My research, and so this proposal centres on two interrelated classes of objects that often arise in these contexts. The first class is that of moduli spaces, the spaces which classify or describe the sets of all objects of a given type: the moduli space of all curves (of a given genus), the moduli space of all bundles, the space of all solutions to a given differential equation, and so on. Questions studied include their construction or description of these spaces, the study of their topology, how they behave as one varies natural parameters, and of course the relations between these spaces. Specific projects include instanton moduli on ALF manifolds, compactification of moduli, spectral asymptotics, topological stability, geometry of local systems. Techniques used are essentially algebraic geometry and differential geometry, with a bit of the theory of partial differential equations. The second segment of my proposal concerns integrable systems. The original definition of these systems was as mechanical systems with sufficiently many symmetries to ensure that they could be more or less explicitly solved; this was then extended to infinite dimensions, allowing the study of "solitons", solutions to shallow water wave equations which behave like solitary waves. From there, the notion has become even more flexible, and encompasses amongst many other things, flows of a geometric origin, and the theory of the functions which arise in this context; and more generally, extraction of solutions from algebras of symmetries. Specific projects include the geometry of tau-functions, tau functions and enumerative invariants, determinant bundles and isomonodromy, deformations to toric varieties, and the geometry of discrete lattice systems. Again, the range of technique is mainly geometrical. The impact for Canada is basically in ensuring a Canadian presence in what has become a central domain of research internationally, and of course training a new generation of mathematical scientists in the area.
在过去的几年里,几何学在数学和理论物理学中发挥了越来越重要的作用:将偏微分方程或物理场的解编码到几何对象中,突出其对称性,显示哪些操作是自然的,哪些不是,我们可以在这里思考连接及其曲率在编码电磁波中的作用,场和麦克斯韦方程,或者弦和它们的世界片表面在理解粒子物理学中的作用。具有广泛几何分支的一组更实用的问题是各种浅水波方程及其解,与无限维哈密顿系统有关。我的研究,因此这个建议集中在两个相互关联的对象类别,经常出现在这些情况下。 第一类是模空间,这种空间对给定类型的所有对象的集合进行分类或描述:所有曲线的模空间(给定亏格的),所有丛的模空间,给定微分方程的所有解的空间,等等。研究的问题包括它们的构造或这些空间的描述,它们的拓扑结构的研究,它们如何作为一个整体而变化,自然参数,当然还有这些空间之间的关系。具体项目包括ALF流形上的瞬子模,模的紧化,谱渐近,拓扑稳定性,局部系统的几何。所使用的技术基本上是代数几何和微分几何,与偏微分方程的理论位。第二部分是关于可积系统的。这些系统的最初定义是作为机械系统与足够多的对称性,以确保他们可以或多或少明确解决;这是然后扩展到无限维,允许研究“孤子”,解决方案浅水波方程的行为像孤立波。从那里,概念已变得更加灵活,并包括在许多其他的事情,流动的几何起源,理论的职能,出现在这方面;更一般地说,提取解决方案的代数的对称性。具体项目包括几何的tau函数,tau函数和枚举不变量,行列式束和isomonodromy,变形的环面品种,和几何的离散格系统。同样,技术的范围主要是几何的。对加拿大的影响基本上是在确保加拿大的存在,在什么已成为一个中心领域的研究国际,当然培训了新一代的数学科学家在该地区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hurtubise, Jacques其他文献

Hurtubise, Jacques的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hurtubise, Jacques', 18)}}的其他基金

Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    RGPIN-2020-04060
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    RGPIN-2020-04060
  • 财政年份:
    2020
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
  • 批准号:
    RGPIN-2015-04393
  • 财政年份:
    2019
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
  • 批准号:
    RGPIN-2015-04393
  • 财政年份:
    2018
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
  • 批准号:
    RGPIN-2015-04393
  • 财政年份:
    2017
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
  • 批准号:
    RGPIN-2015-04393
  • 财政年份:
    2016
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Moduli Spaces and Integrable Systems
模空间和可积系统
  • 批准号:
    RGPIN-2015-04393
  • 财政年份:
    2015
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    44871-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    44871-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    44871-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
  • 批准号:
    11271070
  • 批准年份:
    2012
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
辛几何中的开“格罗莫夫-威腾”不变量
  • 批准号:
    10901084
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
标准模型精确检验和新物理研究
  • 批准号:
    10747127
  • 批准年份:
    2007
  • 资助金额:
    2.0 万元
  • 项目类别:
    专项基金项目
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
  • 批准号:
    10401026
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Research Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometry and Topology of Moduli Spaces
模空间的几何和拓扑
  • 批准号:
    RGPIN-2022-04908
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of moduli spaces and of integrable systems
模空间和可积系统的几何
  • 批准号:
    RGPIN-2020-04060
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Complex geometry of orbifold pairs and of their moduli spaces; structure, classification and relation to arithmetic geometry
轨道对及其模空间的复杂几何;
  • 批准号:
    RGPIN-2022-05387
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
  • 批准号:
    2153059
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Continuing Grant
Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
  • 批准号:
    22K18669
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Combinatorics and Geometry of Moduli Spaces
模空间的组合学和几何
  • 批准号:
    RGPIN-2021-04169
  • 财政年份:
    2022
  • 资助金额:
    $ 2.7万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了