Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
基本信息
- 批准号:RGPIN-2020-04845
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is for obtaining support for my ongoing research in developing a theory and constructing interesting examples of chiral algebras (equivalently known as factorization algebras) in the setting of differential geometry. This research is in collaboration with professor Kobi Kremnizer (University of Oxford, UK). It is well known that in quantum Physics one cannot measure simultaneously the position and the momentum of a particle. This is the famous indeterminacy principle. However, this principle does not imply that there are no laws of Physics on the quantum level. One way to describe these laws is to use smearing, i.e. to view observables not as functions, but as functionals on test functions defined on the space-time. Such formulation leads to very rich algebraic structures, that encode independence of measurements that are performed far away from each other. In quantum physics such formulation is usually called algebraic quantum field theory. In mathematical setting these algebraic structures are called factorization algebras (there is an equivalent reformulation in term of chiral algebras). Under the name of vertex operator algebras they were known for more than 30 years, and in the 1990's a geometric formulation (chiral algebras) was introduced by A.Beilinson and V.Drinfeld. The work of Beilinson and Drinfeld is within algebraic geometry, and this limits in their method of constructing chiral algebras the possible dimension of the space-time to 2. In our research, we are constructing non-trivial examples of chiral algebras in differential geometry. Switching to differential geometry immediately removes the limit on dimension, but introduces many other problems. Some of them we have already solved, others are still a work in progress. The overall direction of this research is towards formulating an algebraic quantum field theory on a 4-dimensional space-time. This problem is open for at least two generations now, and we do not claim to be close to a solution. However, we like to have this challenge in mind to give a direction to our research. Our approach is through adapting the algebraic-geometric techniques of Beilinson and Drinfeld to differential geometry. Different from algebraic geometry objects in differential geometry are described not by polynomial rings but by rings of smooth functions. There are many differences between these two kinds of rings, for example infinitesimals are considerably more complicated in the case of rings of smooth functions. However, we were able to adapt enough of the algebraic-geometric techniques of Beilinson and Drinfeld to make it possible to construct a whole new class of examples of non-trivial chiral algebras.
这项建议是为了支持我正在进行的在微分几何背景下发展理论和构造有趣的手征代数(等价地称为因式分解代数)的研究。这项研究是与英国牛津大学的科比·克雷泽教授合作进行的。众所周知,在量子物理学中,人们不能同时测量粒子的位置和动量。这就是著名的不确定性原则。然而,这一原理并不意味着在量子水平上没有物理定律。描述这些定律的一种方法是使用涂抹,即不将可观测对象视为函数,而是将其视为在时空上定义的测试函数的泛函。这样的表述导致了非常丰富的代数结构,这些结构编码了彼此远离执行的测量的独立性。在量子物理学中,这样的表述通常被称为代数量子场论。在数学背景下,这些代数结构被称为因式分解代数(有一个关于手征代数的等价改写)。在顶点算子代数的名义下,它们被知道了30多年,在1990年代的S中,A.Beilinson和V.Drinfeld引入了一个几何公式(手征代数)。Beilinson和Drinfeld的工作是在代数几何的范围内进行的,这将他们构造手征代数的方法将时空的可能维度限制在2。在我们的研究中,我们正在构造微分几何中的手征代数的非平凡例子。切换到微分几何会立即取消对尺寸的限制,但会引入许多其他问题。其中一些我们已经解决了,其他的还在进行中。这项研究的总体方向是在4维时空上建立一个代数量子场论。这个问题现在至少两代人都是悬而未决的,我们并不声称接近解决方案。然而,我们希望牢记这一挑战,为我们的研究指明方向。我们的方法是将Beilinson和Drinfeld的代数几何技巧应用于微分几何。与代数几何不同,微分几何中的对象不是用多项式环来描述的,而是用光滑函数环来描述的。这两种环之间有许多不同之处,例如无穷小在光滑函数环的情况下要复杂得多。然而,我们能够采用足够多的Beilinson和Drinfeld的代数几何技巧来构造一类全新的非平凡手性代数的例子。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Borisov, Dennis其他文献
Borisov, Dennis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Borisov, Dennis', 18)}}的其他基金
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
RGPIN-2020-04845 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
RGPIN-2020-04845 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
DGECR-2020-00339 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
Drinfeld 模上的特殊值和挠点
- 批准号:12271371
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
Drinfeld模曲线理论及在编码学中的应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非结合Hopf代数的Drinfeld理论及其在量子Yang-Baxter方程中的应用
- 批准号:12001174
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Majid代数的Yetter-Drinfeld模范畴及形变理论研究
- 批准号:11901240
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
乘子余群胚理论和代数量子群胚的双Galois理论及交叉Yetter-Drinfeld-模范畴
- 批准号:11871144
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
对角型Nichols代数及其Drinfeld double的结构和表示
- 批准号:11701019
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
BV 结构、Hochschild 上同调与 Drinfeld Hecke 代数
- 批准号:11671139
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
Drinfeld 模上的特殊值
- 批准号:11671269
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
基于Drinfeld模理论的函数域中数论问题研究
- 批准号:11601009
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Rank Metric Codes from Drinfeld Modules and New Primitives in Code Based Cryptography
职业:对来自 Drinfeld 模块的度量代码和基于代码的密码学中的新原语进行排名
- 批准号:
2338424 - 财政年份:2024
- 资助金额:
$ 1.31万 - 项目类别:
Continuing Grant
Drinfeld保型形式の傾斜に関するP進的手法の推進
推广 Drinfeld 自守形式梯度的 P-adic 方法
- 批准号:
23K03078 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
RGPIN-2020-04845 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
On the Uniform Boundedness Conjecture for Drinfeld Modules
关于Drinfeld模的一致有界性猜想
- 批准号:
21J11912 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Drinfeld保型形式の傾斜
德林菲尔德模态形式的斜率
- 批准号:
20K03545 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
RGPIN-2020-04845 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Beilinson-Drinfeld Grassmannians and chiral algebras in differential geometry
微分几何中的 Beilinson-Drinfeld Grassmannians 和手性代数
- 批准号:
DGECR-2020-00339 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Launch Supplement
H-comodule Algebras with Coefficients in a Stable Anti-Yetter-Drinfeld Contramodule
稳定 Anti-Yetter-Drinfeld 逆模中具有系数的 H 余模代数
- 批准号:
543016-2019 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A function-field analogue of the Gauss hypergeometric function arising from Drinfeld modular curves over finite fields
由有限域上的 Drinfeld 模曲线产生的高斯超几何函数的函数场模拟
- 批准号:
19K03400 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Arithmetic Fundamental Lemma for the Drinfeld space
德林菲尔德空间的算术基本引理
- 批准号:
428982207 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Research Fellowships