Combinatorics and Geometry of Moduli Spaces

模空间的组合学和几何

基本信息

  • 批准号:
    RGPIN-2021-04169
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Long-term goal. Many computational and qualitative problems can be distilled down to mathematical questions about classification and enumeration. The first question asks: what are all the possible curves, surfaces, and other mathematical objects? The second asks: how many of them have a given property, or solve a given problem? In algebraic geometry, we address these questions using moduli spaces: parameter spaces that describe all geometric objects of a given type. My research program focuses on classification and enumeration related to linear spaces and curves, two of the most ubiquitous mathematical objects. The overarching goal of my research is to develop combinatorial tools to count, classify and compute solutions to algebraic and geometric problems involving planes and curves, and to apply these tools to explicitly understand the geometry of the associated moduli spaces. Short-term goals. In the next 5 years, my program will focus on the following: 1. Establish new connections between complex and real geometry involving linear spaces tangent to curves. 2. Develop new combinatorial tools to solve enumerative problems involving moduli of curves. 3. Produce new geometric spaces predicted from combinatorial constructions in representation theory. Approach. Moduli problems are typically approached by focusing on limiting features and by recursively passing to special and degenerate boundary cases. These degeneration techniques usually simplify the geometry while introducing a great deal of combinatorial complexity. As such, tools from combinatorics are essential for the analysis and frequently shed light on the underlying geometry. My research program will establish formal connections between geometry and combinatorics, generally by showing that the geometric processes under examination follow the same recursive patterns as do simpler (discrete) combinatorial models. In most cases, one of either the geometry or the combinatorics is better understood than the other, so the scope of this research also includes developing new combinatorial tools (Objective 2) and constructing and analysing new geometric spaces (Objective 3). Impact. Moduli theory and enumeration are central topics in algebraic geometry, related to deformation theory, birational geometry and broad classification problems. This research program will produce crossover results relating geometry, combinatorics and representation theory. These results will allow researchers to borrow the techniques of other fields, as well as their intuitions, goals and avenues of inquiry. Moreover, the new foundational tools developed for linear spaces and curves will contribute to the development of new techniques for engineering and the natural sciences. This proposal will also support the training of highly qualified personnel in mathematics, particularly algebraic geometry and combinatorics, and will contribute to enhancing Canada's standing in these mathematical fields.
长期目标。 许多计算和定性问题可以归结为有关分类和枚举的数学问题。第一个问题是:所有可能的曲线、曲面和其他数学对象是什么?第二个问题是:他们中有多少人拥有给定的属性,或者解决了给定的问题?在代数几何中,我们使用模空间来解决这些问题:描述给定类型的所有几何对象的参数空间。我的研究项目侧重于与线性空间和曲线(两种最普遍的数学对象)相关的分类和枚举。我研究的总体目标是开发组合工具来计算、分类和计算涉及平面和曲线的代数和几何问题的解决方案,并应用这些工具来明确理解相关模空间的几何形状。短期目标。 在接下来的五年中,我的计划将重点关注以下内容: 1. 在涉及与曲线相切的线性空间的复杂几何和真实几何之间建立新的联系。 2. 开发新的组合工具来解决涉及曲线模的枚举问题。 3. 产生从表示论中的组合构造预测的新几何空间。方法。模问题通常通过关注限制特征并递归地传递到特殊和简并的边界情况来解决。这些退化技术通常会简化几何形状,同时引入大量的组合复杂性。因此,组合学工具对于分析至关重要,并且经常揭示底层几何结构。我的研究计划将在几何学和组合学之间建立正式的联系,通常是通过表明所检查的几何过程遵循与更简单(离散)组合模型相同的递归模式。在大多数情况下,几何学或组合学中的一种比另一种更容易理解,因此本研究的范围还包括开发新的组合工具(目标 2)以及构建和分析新的几何空间(目标 3)。影响。模理论和枚举是代数几何的中心主题,与变形理论、双有理几何和广泛的分类问题相关。该研究项目将产生与几何、组合学和表示论相关的交叉成果。这些结果将使研究人员能够借用其他领域的技术,以及他们的直觉、目标和探究途径。此外,为线性空间和曲线开发的新基础工具将有助于工程和自然科学新技术的发展。该提案还将支持数学领域高素质人才的培训,特别是代数几何和组合数学,并将有助于提高加拿大在这些数学领域的地位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Levinson, Jake其他文献

Levinson, Jake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Levinson, Jake', 18)}}的其他基金

Combinatorics and Geometry of Moduli Spaces
模空间的组合学和几何
  • 批准号:
    RGPIN-2021-04169
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorics and Geometry of Moduli Spaces
模空间的组合学和几何
  • 批准号:
    DGECR-2021-00385
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
Combinatorics and geometry in Schubert calculus
舒伯特微积分中的组合学和几何
  • 批准号:
    502633-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Postdoctoral Fellowships

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
  • 批准号:
    EP/Y037162/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
  • 批准号:
    2349810
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
  • 批准号:
    2401387
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
  • 批准号:
    2309181
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
  • 批准号:
    2240741
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
  • 批准号:
    2304840
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
  • 批准号:
    EP/X002004/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Research Grant
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
  • 批准号:
    2302623
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
  • 批准号:
    DE220100918
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了