Mathematical models of liquidity risk and applications to finance

流动性风险的数学模型及其在金融中的应用

基本信息

  • 批准号:
    RGPIN-2021-03299
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

A financial asset is said to be liquid when large quantities of it can be easily traded at any desired time (i.e., a buyer or seller is readily available to trade with), when the added cost of trading large quantities is negligible, when a trade has little impact on prices, or when the price impact of a large transaction decays rapidly over time. The liquidity of an asset becomes a risk factor when the extent to which the asset is liquid evolves randomly and unpredictably over time. The long-term goal of my Discovery research program is to model the different notions of liquidity, and investigate the relations between each of its dimensions by studying various pricing and portfolio problems in finance in the context of liquidity risk. Many financial markets are based on limit order books. A limit order is an order to buy or sell that is sent to the market specifying price and quantity, but for which there may not currrently be any counterparty to accept it. A limit order book keeps track of all limit and market orders entered, modified, deleted and matched in the system. It offers a direct snapshot of liquidity in which all four dimensions of liquidity can potentially be quantified. Three main objectives associated with the current proposal include: 1. To give a realistic mathematical model of liquidity risk in the context of optimal execution of large orders in a limit order market. The goal of the optimal execution problem is to find the optimal way to divide a large order to buy or sell into smaller transactions in order to minimize expected liquidity costs and market risks related to the variability of prices. Optimal execution techniques allow portfolio managers to considerably reduce transaction costs, and financial institutions have increasingly relied on them in recent years to rein in costs. 2. To explore the consequence of illiquidity in the problem of options hedging and market making. Options are interesting from both a financial and mathematical point of view as their value depends on the underlying asset on which they are defined. The market risk of options can be partially hedged by trading its underlying. By recognizing that trading of the underlying can be done through limit and market orders in a limit order book, the classical problem of options hedging takes an interesting direction due to the mathematical and practical complexity of order books modelling. 3. Management of liquidity risk by firms, banks and other financial institutions. The liquidity of assets and the costs of borrowing are important considerations for firms that must make decisions regarding dividend policy, capital structuring, especially in the face of possible bankruptcy. The outcome of my research will offer new methods of proofs in the field of stochastic control and original modelling ideas of financial markets with liquidity risk. Newly developped numerical methods will have the potential to be applied to a large range of related control problems.
当大量的金融资产可以在任何期望的时间容易地交易时,金融资产被认为是流动的(即,买方或卖方随时可以与之交易),当大量交易的附加成本可以忽略不计时,当交易对价格的影响很小时,或者当大宗交易的价格影响随着时间的推移迅速衰减时。当资产的流动性随着时间的推移而随机和不可预测地变化时,资产的流动性就成为一个风险因素。我的发现研究计划的长期目标是对流动性的不同概念进行建模,并通过研究流动性风险背景下金融中的各种定价和投资组合问题来研究其每个维度之间的关系。许多金融市场是基于限价订单簿。限价单是一种买入或卖出的订单,它被发送到市场,指定价格和数量,但目前可能没有任何交易对手接受它。限价单记录了系统中输入、修改、删除和匹配的所有限价单和市价单。它提供了流动性的直接快照,其中流动性的所有四个方面都可以量化。与当前提案相关的三个主要目标包括:1.给出了限价委托市场中大额委托最优执行下流动性风险的一个现实数学模型。最优执行问题的目标是找到最优的方法来将一个大的订单购买或出售分成较小的交易,以最小化预期的流动性成本和市场风险的价格变化。最佳执行技术使投资组合经理能够大大降低交易成本,近年来金融机构越来越依赖它们来控制成本。 2.探讨非流动性在期权套期保值和做市问题中的后果。从金融和数学的角度来看,期权都很有趣,因为它们的价值取决于它们所定义的基础资产。期权的市场风险可以通过交易其标的物来部分对冲。通过认识到标的物的交易可以通过限价订单簿中的限价和市价订单来完成,由于订单簿建模的数学和实际复杂性,期权套期保值的经典问题采取了一个有趣的方向。3.企业、银行和其他金融机构对流动性风险的管理。资产的流动性和借贷成本是企业必须做出有关股息政策、资本结构决策的重要考虑因素,特别是在面临可能破产的情况下。 本文的研究成果将为随机控制领域提供新的证明方法,并为具有流动性风险的金融市场提供新的建模思路。新发展的数值方法将有可能被应用到大范围的相关控制问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roch, Alexandre其他文献

Roch, Alexandre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roch, Alexandre', 18)}}的其他基金

Mathematical models of liquidity risk and applications to finance
流动性风险的数学模型及其在金融中的应用
  • 批准号:
    RGPIN-2021-03299
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
  • 批准号:
    402741-2012
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
  • 批准号:
    402741-2012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
  • 批准号:
    402741-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
  • 批准号:
    402741-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
  • 批准号:
    402741-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
  • 批准号:
    402741-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Processus de Lévy en finance mathématique
金融数学的征收过程
  • 批准号:
    303369-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Postgraduate Scholarships - Master's

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
  • 批准号:
    2338139
  • 财政年份:
    2025
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Developing eye models to improve eye treatments and contact/intraocular lens technologies
开发眼部模型以改善眼部治疗和隐形眼镜/人工晶状体技术
  • 批准号:
    2608661
  • 财政年份:
    2025
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
  • 批准号:
    AH/Z50550X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Mathematical and Numerical Models of Piezoelectric Wave Energy Converters
压电波能量转换器的数学和数值模型
  • 批准号:
    DP240102104
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Projects
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
  • 批准号:
    MR/Y019717/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了