Polymer Theory of Biologically Functional Phase Separations of Intrinsically Disordered Proteins

本质无序蛋白质的生物功能相分离的聚合物理论

基本信息

  • 批准号:
    RGPIN-2018-04351
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Polymer theories as they stand are mainly concerned with homopolymers. Considerably less attention has been paid to heteropolymers. This relative neglect is not only because heteropolymers are more challenging for theory; it has also been a reflection of the limited available experimental data for benchmarking such theories due to difficulties in chemically synthesizing heteropolymers with specific sequences. Consequently, analytical theories for heteropolymers were mostly confined to treating random or simple block copolymers. In contrast, this limitation does not apply to molecular biology wherein accurate synthesis of protein and nucleic acid sequences is routine. In this respect, the recent discovery of the critical and ubiquitous roles of intrinsically disordered protein (IDP) phase separation in a variety of condensed liquid/gel-like bodies/organizations in and around living cells (including membraneless organelles such as stress granules and the nucleolus) constitutes an important impetus and offers exciting prospects for developing polymer theories for sequence-dependent heteropolymer phase properties. Despite the intense interest generated by the observation of IDP phase separations, physical understanding of the phenomenon is only at its infancy. Mean-field Flory-Huggins (FH) and Overbeek-Voorn theories have been invoked, but they alone are insufficient because an account for sequence-specificity is lacking. In this context, the applicant's group made the first breakthrough by applying the random-phase approximation (RPA) polymer theory to address how phase behaviors of polyampholytes depend on the charge patterns along their chain sequences. We showed further that the propensity for a neutral polyampholyte to phase separate in a multiple-chain setting is strongly and negatively correlated with its conformational dimensions as an individual chain. Most recently, using an extension of RPA, we found also that the tendency for chains of two IDP sequences to mix or demix upon phase separation is correlated with the difference in their charge patterns.Building on these seminal advances, we will develop further analytical formulations for sequence-dependent effects of not only electrostatics but also other forms of inter-monomer interactions as well as local variations of chain stiffness. In order to afford a better account of IDPs with high net charge densities and interactions with short spatial ranges such as hydrophobicity, we will device novel techniques to apply variational methods for renormalized Kuhn lengths to circumvent certain shortcomings of RPA theories. By using our theory to rationalize the rapidly expanding repertoire of experimental data on IDP phase separation and to make testable predictions, the proposed effort will provide valuable insights into cellular compartmentalization and can also facilitate development of new materials.
目前的聚合物理论主要涉及均聚物。对杂聚物的关注要少得多。这种相对忽视不仅是因为杂聚物对理论更具挑战性;它也反映了由于化学合成具有特定序列的杂聚物的困难,用于对此类理论进行基准测试的可用实验数据有限。因此,杂聚物的分析理论大多局限于处理无规或简单的嵌段共聚物。相反,这种限制不适用于分子生物学,其中蛋白质和核酸序列的精确合成是常规的。在这方面,最近发现的关键和普遍存在的作用,内在无序蛋白质(IDP)相分离的各种浓缩的液体/凝胶样机构/组织和周围的活细胞(包括无膜细胞器,如应力颗粒和核仁)构成了一个重要的推动力,并提供了令人兴奋的前景,为发展聚合物理论的序列依赖性杂聚物相的性质。尽管对IDP相分离的观察引起了人们的浓厚兴趣,但对该现象的物理理解仅处于起步阶段。平均场Flory-Huggins(FH)和Overbeek-Voorn理论已经被引用,但它们本身是不够的,因为缺乏对序列特异性的解释。在此背景下,申请人的小组通过应用无规相近似(RPA)聚合物理论来解决聚两性电解质的相行为如何取决于沿其链序列的电荷模式沿着而取得了第一个突破。 我们进一步表明,中性两性聚电解质在多链环境中相分离的倾向与其作为单个链的构象尺寸强烈负相关。最近,使用RPA的扩展,我们还发现,两个IDP序列的链相分离时混合或分层的趋势与它们的电荷模式的差异相关,这些开创性的进展的基础上,我们将开发进一步的分析配方序列依赖的影响,不仅静电,但也有其他形式的单体间相互作用,以及局部变化的链刚度。为了更好地考虑具有高净电荷密度和与短空间范围(如疏水性)的相互作用的IDP,我们将采用新的技术来应用变分方法来计算重整化库恩长度,以规避RPA理论的某些缺点。通过使用我们的理论来合理化IDP相分离的快速扩展的实验数据库并进行可测试的预测,所提出的努力将为细胞区室化提供有价值的见解,也可以促进新材料的开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chan, HueSun其他文献

Chan, HueSun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chan, HueSun', 18)}}的其他基金

Polymer Theory of Biologically Functional Phase Separations of Intrinsically Disordered Proteins
本质无序蛋白质的生物功能相分离的聚合物理论
  • 批准号:
    RGPIN-2018-04351
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer Theory of Biologically Functional Phase Separations of Intrinsically Disordered Proteins
本质无序蛋白质的生物功能相分离的聚合物理论
  • 批准号:
    RGPIN-2018-04351
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer Theory of Biologically Functional Phase Separations of Intrinsically Disordered Proteins
本质无序蛋白质的生物功能相分离的聚合物理论
  • 批准号:
    RGPIN-2018-04351
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Polymer Theory of Biologically Functional Phase Separations of Intrinsically Disordered Proteins
本质无序蛋白质的生物功能相分离的聚合物理论
  • 批准号:
    RGPIN-2018-04351
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and energetic principles of type-II topoisomerase actions on DNA topology
II型拓扑异构酶对DNA拓扑作用的统计和能量原理
  • 批准号:
    216901-2007
  • 财政年份:
    2013
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and energetic principles of type-II topoisomerase actions on DNA topology
II型拓扑异构酶对DNA拓扑作用的统计和能量原理
  • 批准号:
    216901-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and energetic principles of type-II topoisomerase actions on DNA topology
II型拓扑异构酶对DNA拓扑作用的统计和能量原理
  • 批准号:
    216901-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and energetic principles of type-II topoisomerase actions on DNA topology
II型拓扑异构酶对DNA拓扑作用的统计和能量原理
  • 批准号:
    216901-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical and energetic principles of type-II topoisomerase actions on DNA topology
II型拓扑异构酶对DNA拓扑作用的统计和能量原理
  • 批准号:
    216901-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Problems in Ramsey theory
拉姆齐理论中的问题
  • 批准号:
    2582036
  • 财政年份:
    2025
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Studentship
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
  • 批准号:
    2414424
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
  • 批准号:
    2349174
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
  • 批准号:
    2349868
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
  • 批准号:
    2400553
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
  • 批准号:
    2401514
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了