Identification and integration of systems level microbial synthetic lethality interactions to enhance genome design

系统级微生物合成致死相互作用的识别和整合以增强基因组设计

基本信息

  • 批准号:
    RGPIN-2020-06328
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Synthetic biology is an emerging discipline that has the potential to revolutionize many areas from the chemical industry to medicine. The goal is to redesign biological organisms such as the yeast Saccharomyces cerevisiae or the gut microbe Escherichia coli to produce chemicals of interest. The range of molecules that can be produced by these biological organisms is virtually any biological molecules (from biofuels, to aromas, to antibodies for cancer treatment), with a more biosustainable production. The recent advances of in vitro DNA synthesis and assembly methods support the idea that synthetic biology is on the verge of blooming, allowing the materialization of new genome designs. However, these technical abilities now pose the deciphering of biological complexity as the next grand challenge for rational genome designs. The long-term goal of this research program is thus to enhance genome design by increasing our current knowledge of molecular interactions and constraints allowing organisms to thrive. Deleting a gene is a classical way of deciphering gene functions by studying the cellular processes in which the target gene is involved. In the bacterial model organism E. coli, a useful resource named the Keio collection is available where each of the ~3800 non-essential genes were individually deleted. While single-gene deletion provides information on the function of the gene itself, about a third of E. coli genes are still lacking experimental evidence of function. Considering that genes are working in complex networks, studying double-gene deletions on a genome-wide scale has the potential to establish new functional relationships between genes and increase our understanding of such networks. The number of combinations for double deletions is nevertheless daunting (> 9 million in E. coli) and probing it requires a high-throughput method. Random transposon mutagenesis is such method where a DNA element called transposon can integrate itself at virtually any location in the genome and be identified using high-throughput sequencing. The absence of insertions in a gene is used to infer essentiality, based on killing that depletes from the population the cells having an insertion in an important gene. In the current research program, we propose to apply a transposon mutagenesis method that we recently optimized, to the complete Keio collection single-gene mutant strains, hereby identifying all viable and non-viable double-gene deletions possible in E. coli. To further our understanding of these interactions, we will integrate the data we generated with computational models and generate several hypotheses of novel gene functions. The current limitation on genome design being the lack of complete knowledge of gene functions, our research program will provide a key resource for the community and improve genome reduction design, importantly contributing to the development of synthetic biology.
合成生物学是一门新兴学科,有可能彻底改变从化学工业到医学的许多领域。目标是重新设计生物有机体,如酵母酿酒酵母或肠道微生物大肠杆菌,以产生感兴趣的化学物质。这些生物有机体可以产生的分子范围几乎是任何生物分子(从生物燃料到芳香剂,再到用于癌症治疗的抗体),具有更生物可持续的生产。体外DNA合成和组装方法的最新进展支持了合成生物学即将蓬勃发展的想法,允许实现新的基因组设计。然而,这些技术能力现在提出破译生物复杂性作为理性基因组设计的下一个重大挑战。因此,这项研究计划的长期目标是通过增加我们目前对分子相互作用和限制的了解来增强基因组设计,从而使生物体茁壮成长。删除基因是通过研究靶基因所参与的细胞过程来破译基因功能的经典方法。在细菌模式生物E.大肠杆菌中,一个有用的资源名为Keio收集,其中约3800个非必需基因中的每一个都被单独删除。虽然单基因缺失提供了基因本身功能的信息,但大约三分之一的E。大肠杆菌基因仍然缺乏功能的实验证据。考虑到基因是在复杂的网络中工作的,在全基因组范围内研究双基因缺失有可能在基因之间建立新的功能关系,并增加我们对这种网络的理解。然而,双缺失的组合数量是令人生畏的(在E.大肠杆菌),探测它需要高通量的方法。随机转座子诱变是这样一种方法,其中称为转座子的DNA元件可以将其自身整合在基因组中的几乎任何位置,并使用高通量测序进行鉴定。基因中没有插入被用来推断必要性,基于从群体中耗尽具有重要基因插入的细胞的杀死。 在目前的研究计划中,我们提出了一个转座子诱变方法,我们最近优化,以完整的庆应义塾收集单基因突变株,从而确定所有可行的和不可行的双基因缺失可能在大肠杆菌。杆菌为了进一步了解这些相互作用,我们将整合我们生成的数据与计算模型,并生成新的基因功能的几个假设。目前基因组设计的限制是缺乏对基因功能的完整了解,我们的研究计划将为社区提供关键资源,并改进基因组简化设计,为合成生物学的发展做出重要贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacques, PierreÉtienne其他文献

Jacques, PierreÉtienne的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacques, PierreÉtienne', 18)}}的其他基金

Identification and integration of systems level microbial synthetic lethality interactions to enhance genome design
系统级微生物合成致死相互作用的识别和整合以增强基因组设计
  • 批准号:
    RGPIN-2020-06328
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Identification and integration of systems level microbial synthetic lethality interactions to enhance genome design
系统级微生物合成致死相互作用的识别和整合以增强基因组设计
  • 批准号:
    RGPIN-2020-06328
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics tool development to analyze and integrate genomics data generated by high-throughput sequencing / Développement d'outils bio-info analysant les données de séquençage
生物信息学工具开发,用于分析和整合高通量测序生成的基因组数据 / Développement doutils 生物信息分析工具 les données de séquençage
  • 批准号:
    435710-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics tool development to analyze and integrate genomics data generated by high-throughput sequencing / Développement d'outils bio-info analysant les données de séquençage
生物信息学工具开发,用于分析和整合高通量测序生成的基因组数据 / Développement doutils 生物信息分析工具 les données de séquençage
  • 批准号:
    435710-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics tool development to analyze and integrate genomics data generated by high-throughput sequencing / Développement d'outils bio-info analysant les données de séquençage
生物信息学工具开发,用于分析和整合高通量测序生成的基因组数据 / Développement doutils 生物信息分析工具 les données de séquençage
  • 批准号:
    435710-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics tool development to analyze and integrate genomics data generated by high-throughput sequencing / Développement d'outils bio-info analysant les données de séquençage
生物信息学工具开发,用于分析和整合高通量测序生成的基因组数据 / Développement doutils 生物信息分析工具 les données de séquençage
  • 批准号:
    435710-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Bioinformatics tool development to analyze and integrate genomics data generated by high-throughput sequencing / Développement d'outils bio-info analysant les données de séquençage
生物信息学工具开发,用于分析和整合高通量测序生成的基因组数据 / Développement doutils 生物信息分析工具 les données de séquençage
  • 批准号:
    435710-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
A web server integrated into a supercomputer for a new generation of bioinformatics tools / Serveur web intégré à un superordinateur pour une nouvelle génération d'outils bio-info
集成到超级计算机中的新一代生物信息学工具的网络服务器 / Serveur web intégré à un superordientur pour une nouvelle génération doutils bio-info
  • 批准号:
    439535-2013
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)

相似海外基金

BCCMA: Overcoming chemoresistance in ovarian cancer: Identification and validation of biomarkers and targetable drivers of platinum resistance
BCCMA:克服卵巢癌的化疗耐药性:铂类耐药的生物标志物和靶向驱动因素的识别和验证
  • 批准号:
    10585641
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Identification and characterization of molecular subtypes of Alzheimer's disease associated with cognitive function through cross-omics data integration
通过跨组学数据整合识别和表征与认知功能相关的阿尔茨海默病分子亚型
  • 批准号:
    10722083
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Multi-OMICS identification and validation of mechanisms triggered by Immune interventions aimed at reducing the size of the replication competent Reservoir
多组学鉴定和验证免疫干预触发的机制,旨在减少复制能力储库的大小
  • 批准号:
    10731661
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Identification of Early Metabolomic and Immune Endotypes of Allergy and Asthma: An Integrated Multiomics Approach
过敏和哮喘早期代谢组学和免疫内型的鉴定:综合多组学方法
  • 批准号:
    10896779
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Expanding the Geospatial Identification of Elevated Suicide Risk (GIESR) Method to Identify Neighborhood Level Risk and Protective Factors for Youth Suicide Ideation and Attempts
扩展自杀风险高的地理空间识别 (GIESR) 方法,以识别社区层面的风险以及青少年自杀意念和企图的保护因素
  • 批准号:
    10665074
  • 财政年份:
    2022
  • 资助金额:
    $ 2.62万
  • 项目类别:
Assisted Identification and Navigation of Early Mental Health Symptoms in Children
儿童早期心理健康症状的辅助识别和导航
  • 批准号:
    10094734
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
Identification and integration of systems level microbial synthetic lethality interactions to enhance genome design
系统级微生物合成致死相互作用的识别和整合以增强基因组设计
  • 批准号:
    RGPIN-2020-06328
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Assisted Identification and Navigation of Early Mental Health Symptoms in Children
儿童早期心理健康症状的辅助识别和导航
  • 批准号:
    10330457
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
Identification and integration of systems level microbial synthetic lethality interactions to enhance genome design
系统级微生物合成致死相互作用的识别和整合以增强基因组设计
  • 批准号:
    RGPIN-2020-06328
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing Interdisciplinary Science of Aging through Identification of Iatrogenic Complications: The UF EHR Clinical Data Infrastructure for Enhanced Patient Safety among the Elderly (UF-ECLIPSE)
通过识别医源性并发症推进衰老的跨学科科学:UF EHR 临床数据基础设施,用于增强老年人患者的安全 (UF-ECLIPSE)
  • 批准号:
    10617716
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了