Dynamics of electric sensing
电传感动力学
基本信息
- 批准号:RGPIN-2019-04431
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bioelectric fields are ubiquitous in nature; they underlie our movements, our heart beat, and our thoughts. In the brain, these electric fields arise from the time-varying activity of the neuronal networks that control behaviour, and are reflected in the electroencephalogram (EEG) that we can record with sensing electrodes placed on our scalp. While the EEG can tell us about overall brain state, we know relatively little about how to determine the function of local networks from this global signal. Imagine hearing the repeated roars of a crowd in a distant stadium - you know something is happening, but you don't know what or why, or who in the stadium is actually cheering. We would like to know the "what", "why" and "who" underlying signals like the EEG. It turns out that nature has already solved a similar problem: electric fish use the spatiotemporal changes in electric fields to characterize their environment. Weakly electric fish generate an oscillating electric field that is perturbed by surrounding objects. These perturbations are encoded by specialized electroreceptors on the skin, allowing the fish to navigate, capture prey and communicate in the dark. This involves a significant challenge: electric field perturbations are miniscule (entirely undetectable to us) and often contaminated with high levels of background noise, including the electric signals of other fish. The fish overcomes this challenge using two strategies. First, electric fish dynamically swim backwards and forwards, using motion to extract maximal information. Second, the clock-like timing of their oscillating electric field is much more precise than any other biological clock, allowing even the smallest modulations to be detected. My proposal focuses on these strategies in the context of two fundamental questions: (1) How does motion influence the acquisition of sensory information? (2) How do brain networks control timing precision? Our approach is multi-disciplinary, combining behavioural studies with electrophysiology and computational modeling. We use a virtual reality system to probe electrosensory perception while controlling the information available to the fish through active movements. And using single neuron recordings and specific network manipulations, we discover the brain mechanisms that enable highly precise neural activity. These studies are informed by detailed computational models of electric field dynamics and neural networks. This multidisciplinary training ground is ideal for students at all levels, preparing them for a wide range of careers in biotechnology and high-technology, as well as in government labs and academia. Understanding this exquisite electric sense will not only provide a window into the exotic world of electric fish, but will also increase our understanding of sensing in general. In turn, this will impact diverse areas in neuroscience and enable us to better-interpret the electric fields in our own brains.
生物电场在自然界中无处不在;它们支撑着我们的行动、心跳和思想。在大脑中,这些电场来自控制行为的神经网络的时变活动,并反映在我们可以用放置在头皮上的传感电极记录的脑电(EEG)中。虽然脑电可以告诉我们大脑的整体状态,但我们对如何从这个全局信号中确定局部网络的功能知之甚少。想象一下,在远处的体育场,听到人群反复的欢呼声--你知道有事情发生,但你不知道是什么,为什么,也不知道体育场里到底是谁在欢呼。我们想知道“什么”、“为什么”和“谁”的潜在信号,就像脑电一样。事实证明,大自然已经解决了一个类似的问题:电鱼利用电场的时空变化来表征它们的环境。弱电鱼类产生的振荡电场会受到周围物体的干扰。这些干扰是由皮肤上的特殊电感受器编码的,允许鱼在黑暗中导航、捕获猎物和交流。这涉及到一个重大挑战:电场扰动很小(我们完全检测不到),而且经常被高水平的背景噪声污染,包括其他鱼类的电信号。这种鱼通过两种策略克服了这一挑战。首先,电鱼动态向前和向后游,利用运动提取最大信息。其次,它们振荡电场的时钟定时比任何其他生物时钟都要精确得多,即使是最小的调制也能被检测到。我的建议集中在两个基本问题的背景下的这些策略:(1)运动如何影响感觉信息的获取?(2)大脑网络如何控制计时精度?我们的方法是多学科的,将行为研究与电生理学和计算建模相结合。我们使用虚拟现实系统来探测电感官知觉,同时通过主动运动来控制鱼可以获得的信息。利用单个神经元的记录和特定的网络操作,我们发现了使高精度神经活动成为可能的大脑机制。这些研究由电场动力学和神经网络的详细计算模型提供信息。这个多学科的培训基地非常适合所有级别的学生,为他们在生物技术和高科技领域以及政府实验室和学术界的广泛职业生涯做好准备。了解这种精致的电感不仅会为我们提供一个了解电鱼异国情调的窗口,还会增加我们对感官的总体理解。反过来,这将影响神经科学的各个领域,使我们能够更好地解释我们大脑中的电场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lewis, John其他文献
The use of multi element profiling to differentiate between cow and buffalo milk
- DOI:
10.1016/j.foodchem.2008.01.049 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:8.8
- 作者:
Benincasa, Cinzia;Lewis, John;Tagarelli, Antonio - 通讯作者:
Tagarelli, Antonio
Changes in acute biochemical markers of inflammatory and structural stress in rugby union
- DOI:
10.1080/02640414.2014.971047 - 发表时间:
2015-05-28 - 期刊:
- 影响因子:3.4
- 作者:
Lindsay, Angus;Lewis, John;Gieseg, Steven P. - 通讯作者:
Gieseg, Steven P.
Highly monodisperse, lanthanide-containing polystyrene nanoparticles as potential standard reference materials for environmental "nano" fate analysis
- DOI:
10.1002/app.42061 - 发表时间:
2015-06-20 - 期刊:
- 影响因子:3
- 作者:
Hughes, Jonathan M.;Budd, Peter M.;Lewis, John - 通讯作者:
Lewis, John
Recovery of spiked Δ9-tetrahydrocannabinol in oral fluid from polypropylene containers
- DOI:
10.1016/j.forsciint.2012.11.006 - 发表时间:
2013-04-10 - 期刊:
- 影响因子:2.2
- 作者:
Molnar, Anna;Lewis, John;Fu, Shanlin - 通讯作者:
Fu, Shanlin
Evaluation of Nanoparticle Uptake in Tumors in Real Time Using Intravital Imaging
- DOI:
10.3791/2808 - 发表时间:
2011-06-01 - 期刊:
- 影响因子:1.2
- 作者:
Cho, Choi-Fong;Ablack, Amber;Lewis, John - 通讯作者:
Lewis, John
Lewis, John的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lewis, John', 18)}}的其他基金
Dynamics of electric sensing
电传感动力学
- 批准号:
RGPIN-2019-04431 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of electric sensing
电传感动力学
- 批准号:
RGPIN-2019-04431 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of electric sensing
电传感动力学
- 批准号:
RGPIN-2019-04431 - 财政年份:2019
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of sensory processing: from neurons to behaviour
感觉处理的动力学:从神经元到行为
- 批准号:
RGPIN-2014-05872 - 财政年份:2018
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of sensory processing: from neurons to behaviour
感觉处理的动力学:从神经元到行为
- 批准号:
RGPIN-2014-05872 - 财政年份:2017
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of sensory processing: from neurons to behaviour
感觉处理的动力学:从神经元到行为
- 批准号:
RGPIN-2014-05872 - 财政年份:2016
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of sensory processing: from neurons to behaviour
感觉处理的动力学:从神经元到行为
- 批准号:
RGPIN-2014-05872 - 财政年份:2015
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of sensory processing: from neurons to behaviour
感觉处理的动力学:从神经元到行为
- 批准号:
RGPIN-2014-05872 - 财政年份:2014
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of sensory processing: from single neurons to behaviour
感觉处理的动力学:从单个神经元到行为
- 批准号:
288298-2009 - 财政年份:2013
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of sensory processing: from single neurons to behaviour
感觉处理的动力学:从单个神经元到行为
- 批准号:
288298-2009 - 财政年份:2012
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
电场对血管发生的调控作用及其信号转导通路的研究
- 批准号:30871268
- 批准年份:2008
- 资助金额:30.0 万元
- 项目类别:面上项目
基于电刺激的动物运动行为控制方法研究
- 批准号:60375026
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Sensing intracranial bioimpedance through anatomic windows for classifying stroke type
通过解剖窗感测颅内生物阻抗以对中风类型进行分类
- 批准号:
10667998 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Beyond theta: analyzing oscillations across the frequency spectrum in patients with dystonia implanted with sensing-enabled pulse generators
超越 theta:分析植入传感脉冲发生器的肌张力障碍患者的整个频谱振荡
- 批准号:
10569467 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
PFI-TT: Vibration Energy Harvesting to Meet Power Demands for the Electric Grid and Remote Sensing
PFI-TT:振动能量收集以满足电网和遥感的电力需求
- 批准号:
2140523 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
LEAPS-MPS: Electric field sensing with nitrogen vacancy centers and chemical tuning of the diamond host
LEAPS-MPS:利用氮空位中心的电场传感和金刚石主体的化学调谐
- 批准号:
2213520 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
Wearable Electrostrictive Row-Column Ultrasound Arrays for Longitudinal Echocardiography
用于纵向超声心动图的可穿戴电致伸缩行列超声阵列
- 批准号:
10354880 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Non-invasive electric field sensing by second harmonic generation with self-polarization control
通过自极化控制产生二次谐波进行非侵入式电场传感
- 批准号:
22H01462 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Laser Induced NanoCarbon Multielectrode Arrays for Neurotransmitter Sensing
用于神经递质传感的激光诱导纳米碳多电极阵列
- 批准号:
10288138 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
COVID-19: High Efficiency SARS-CoV-2 Virus Aerosol Sampling and Sensing
COVID-19:高效 SARS-CoV-2 病毒气溶胶采样和传感
- 批准号:
10325899 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Dynamics of electric sensing
电传感动力学
- 批准号:
RGPIN-2019-04431 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Discovery Grants Program - Individual
Classifying Oral Lesions with Chip-on-tip Electrical Impedance Sensing
利用尖端芯片电阻抗传感对口腔病变进行分类
- 批准号:
10287597 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别: