Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
基本信息
- 批准号:RGPIN-2018-04723
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The amount of data in the world is growing at an exponential rate, and both science and industry increasingly need scalable tools and techniques to analyze and understand it. This need is rapidly promoting the role of machine learning in high-tech industries and data-driven disciplines. In particular, recent advances in machine learning have brought us deep learning, a game-changing approach to inference and learning that can efficiently process a large amount of data and build powerful and expressive models. However, we cannot use deep learning within the most demanding and exciting big-data domains. Whether we are considering the neural connectivity of the brain, the large-scale structure of the Universe, or relational structure of databases, today's deep learning does not have the tools and techniques to address the very high dimensional and structured instances within these domains.My proposed research addresses this critical problem by designing methodologies for A) active subsampling of the data for handling very large instances and; B) encoding domain structure through a group of transformations that do not alter its content: its symmetries. I focus on cosmological and relational data as two high-impact domains to showcase the proposed approach in designing deep models. For the settings in which the domain structure is unknown a priori, I outline a plan to investigate the discovery of domain structure via its symmetries. The major deliverables of this proposal are simple, generic and effective methods and models that extend the newfound power of deep learning to handle key structures. If successful, this program will revolutionize the current approach to cosmology, which is currently built on oversimplifying assumptions. Our objective in enabling deep learning on relational data will have a significant impact on the big-data industry, by providing the technology for scalable and accurate extrapolation of the data in widely used relational databases. The novel ability of discovering domain invariances using deep models, will bring interpretability to unstructured data and will produce a condensed form of knowledge from a large number of observations. I believe this program provides an opportunity for education of truly interdisciplinary researchers that would not only help maintain the leading position of Canada in AI but also leverage this position in a timely fashion to advance other data-driven areas within science and engineering.
世界上的数据量正以指数级速度增长,科学和工业都越来越需要可扩展的工具和技术来分析和理解它。这种需求正在迅速推动机器学习在高科技行业和数据驱动学科中的作用。特别是,机器学习的最新进展为我们带来了深度学习,这是一种改变游戏规则的推理和学习方法,可以有效地处理大量数据并构建强大而富有表现力的模型。然而,我们不能在最苛刻和最令人兴奋的大数据领域中使用深度学习。无论我们是考虑大脑的神经连接,宇宙的大规模结构,还是数据库的关系结构,今天的深度学习都没有工具和技术来解决这些领域中非常高维和结构化的实例。我提出的研究通过设计方法来解决这个关键问题:A)处理非常大的实例的数据的主动子采样; B)通过一组不改变域结构内容的变换对域结构进行编码:其对称性。我专注于宇宙学和关系数据作为两个高影响力的领域,以展示设计深度模型的方法。对于域结构是未知的先验的设置,我概述了一个计划,调查域结构的发现,通过其对称性。该提案的主要交付成果是简单、通用和有效的方法和模型,这些方法和模型扩展了深度学习的新功能,以处理关键结构。如果成功的话,这个项目将彻底改变目前建立在过度简化假设上的宇宙学方法。我们在关系数据上实现深度学习的目标将对大数据行业产生重大影响,通过提供广泛使用的关系数据库中数据的可扩展和准确外推技术。使用深度模型发现域不变性的新能力将为非结构化数据带来可解释性,并将从大量观察中产生知识的浓缩形式。我相信这个项目为真正的跨学科研究人员提供了一个教育机会,这不仅有助于保持加拿大在人工智能领域的领先地位,而且还能及时利用这一地位,推动科学和工程领域的其他数据驱动领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ravanbakhsh, Siamak其他文献
Galaxies and haloes on graph neural networks: Deep generative modelling scalar and vector quantities for intrinsic alignment
图神经网络上的星系和光环:用于内在对齐的深度生成模型标量和向量
- DOI:
10.1093/mnras/stac2083 - 发表时间:
2022 - 期刊:
- 影响因子:4.8
- 作者:
Jagvaral, Yesukhei;Lanusse, François;Singh, Sukhdeep;Mandelbaum, Rachel;Ravanbakhsh, Siamak;Campbell, Duncan - 通讯作者:
Campbell, Duncan
Characterization of inpaint residuals in interferometric measurements of the epoch of reionization
再电离时代干涉测量中修复残差的表征
- DOI:
10.1093/mnras/stad441 - 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
Pagano, Michael;Liu, Jing;Liu, Adrian;Kern, Nicholas S;Ewall-Wice, Aaron;Bull, Philip;Pascua, Robert;Ravanbakhsh, Siamak;Abdurashidova, Zara;Adams, Tyrone - 通讯作者:
Adams, Tyrone
Ravanbakhsh, Siamak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ravanbakhsh, Siamak', 18)}}的其他基金
Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
- 批准号:
RGPIN-2018-04723 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
- 批准号:
RGPIN-2018-04723 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
- 批准号:
RGPIN-2018-04723 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
- 批准号:
RGPIN-2018-04723 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
- 批准号:
DGECR-2018-00282 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210388 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210337 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Standard Grant
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10709474 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10334519 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
- 批准号:
2106339 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
- 批准号:
2106560 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
- 批准号:
RGPIN-2018-04723 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CIF: Medium: Emerging Directions in Robust Learning and Inference
协作研究:CIF:媒介:稳健学习和推理的新兴方向
- 批准号:
2106727 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Continuing Grant
Merging machine learning and mechanistic models to improve prediction and inference in emerging epidemics
融合机器学习和机械模型以改进对新兴流行病的预测和推理
- 批准号:
10539401 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Scalable Inference in Emerging Structured Domains
新兴结构化领域中的可扩展推理
- 批准号:
RGPIN-2018-04723 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual