Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning

基于机器学习的下一代现场可编程门阵列计算机辅助设计工具

基本信息

  • 批准号:
    RGPIN-2019-03982
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Compile times for Field Programmable Gate Array (FPGA) Computer-Aided Design (CAD) tools can be on the order of hours or even days for the largest, most complex designs. Excessive runtimes not only adversely impact engineering productivity and costs, they act as a serious impediment to the adoption of FPGAs by software developers who are used to compilation times of seconds or minutes. Recent advances in machine learning and deep learning offer fresh paradigms to revise or completely redesign traditional FPGA CAD algorithms and tools. Accordingly, the overarching goal of this research program is to develop a smart FPGA CAD flow. This work leverages machine learning, deep learning, modern optimization algorithms, and scalable parallelization to minimize the runtimes for key CAD steps in the flow and the total number of times these steps must be performed. As Place-and-Route (P&R) is the largest consumer of CPU time, all short-term goals are aimed at reducing P&R runtimes and improving solution quality. The research will be broken down into six complementary thrusts, including: 1) development of suitable FPGA CAD benchmarks for training and testing machine-learning and deep-learning algorithms, 2) development of a modular analytic placement flow, where each stage will contain various machine-learning and deep-learning models, cost-functions, and parallel optimizations suitable for modern 2D and 2.5D FPGA devices, 3) combining the modular placement flow with a machine-learning framework to automatically construct the most appropriate placement strategy based on features of the circuit to be mapped onto the FPGA, 4) development of a smart detailed router that uses deep learning to guide the router to avoid excessive congestion thus improving runtime and solution quality, 5) development of machine-learning and deep-learning models to assist the technology (dependent) mapping stage to assess how local mapping decisions will impact subsequent solution quality, and 6) development of smart machine-learning and deep-learning models to assist in parameter selection, and the determination of circuit similarity methods so that past solutions for similar designs can be leveraged for new designs. The proposed research program will improve FPGA technology by making FPGAs easier to use by reducing compilation times and improving solution quality, and will bring a deeper understanding to how evolving machine learning and deep learning algorithms and methods will not only provide desired predictions or solutions to complex FPGA CAD problems, but will also enable FPGA CAD tools to learn from past design experiences to improve decision making, and hence performance, over time. The overall significance of this work will be to provide FPGA vendors and users with scalable, intelligent FPGA CAD tools that can produce high-quality solutions, while avoiding excessive runtimes.
对于最大、最复杂的设计,现场可编程门阵列(FPGA)计算机辅助设计(CAD)工具的编译时间可以是几个小时甚至几天。过多的运行时间不仅会对工程生产力和成本产生不利影响,而且会严重阻碍软件开发人员采用FPGA,因为他们习惯于数秒或数分钟的编译时间。 机器学习和深度学习的最新进展为修改或完全重新设计传统的FPGA CAD算法和工具提供了新的范例。因此,本研究计划的总体目标是开发智能FPGA CAD流程。这项工作利用机器学习、深度学习、现代优化算法和可扩展的并行化来最大限度地减少流程中关键CAD步骤的运行时间以及必须执行这些步骤的总次数。 由于放置和路由(P&R)是CPU时间的最大消耗者,因此所有短期目标都旨在减少P&R运行时间并提高解决方案质量。研究将分为六个互补的重点,包括:1)开发合适的FPGA CAD基准,用于训练和测试机器学习和深度学习算法,2)开发模块化分析布局流程,其中每个阶段将包含各种机器学习和深度学习模型,成本函数以及适用于现代2D和2.5D FPGA器件的并行优化,3)将模块化布局流程与机器学习框架相结合,以基于要映射到FPGA上的电路的特征来自动构建最合适的布局策略,4)开发智能详细路由器,其使用深度学习来指导路由器避免过度拥塞,从而提高运行时间和解决方案质量,5)开发机器学习和深度学习模型,以协助技术(依赖)映射阶段,以评估本地映射决策将如何影响后续解决方案质量,以及6)开发智能机器学习和深度学习模型,以帮助参数选择,以及电路相似性方法的确定,使得用于相似设计的过去解决方案可以用于新设计。 拟议的研究计划将通过减少编译时间和提高解决方案质量使FPGA更易于使用来改进FPGA技术,并将更深入地了解不断发展的机器学习和深度学习算法和方法如何不仅为复杂的FPGA CAD问题提供所需的预测或解决方案,而且还将使FPGA CAD工具能够从过去的设计经验中学习,以改善决策。从而提高性能。这项工作的总体意义将是为FPGA供应商和用户提供可扩展的智能FPGA CAD工具,这些工具可以产生高质量的解决方案,同时避免过多的运行时间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grewal, Gary其他文献

Measurement and Analysis of Vehicle Vibration for Delivering Packages in Small-Sized and Medium-Sized Trucks and Automobiles
  • DOI:
    10.1002/pts.955
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Chonhenchob, Vanee;Singh, Sher Paul;Grewal, Gary
  • 通讯作者:
    Grewal, Gary

Grewal, Gary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grewal, Gary', 18)}}的其他基金

Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning
基于机器学习的下一代现场可编程门阵列计算机辅助设计工具
  • 批准号:
    RGPIN-2019-03982
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning
基于机器学习的下一代现场可编程门阵列计算机辅助设计工具
  • 批准号:
    RGPIN-2019-03982
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Next Generation Field-Programmable Gate-Array Computer-Aided Design Tools based on Machine Learning
基于机器学习的下一代现场可编程门阵列计算机辅助设计工具
  • 批准号:
    RGPIN-2019-03982
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Placement and routing for video Codec applications running on modern FPGAs
现代 FPGA 上运行的视频编解码器应用的布局和布线
  • 批准号:
    530734-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Engage Grants Program
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
  • 批准号:
    RGPIN-2014-03818
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
  • 批准号:
    RGPIN-2014-03818
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
  • 批准号:
    RGPIN-2014-03818
  • 财政年份:
    2016
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
  • 批准号:
    RGPIN-2014-03818
  • 财政年份:
    2015
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
An Intelligent, Parallel Framework for Field-Programmable Gate-Array Placement and Routing
用于现场可编程门阵列布局和布线的智能并行框架
  • 批准号:
    RGPIN-2014-03818
  • 财政年份:
    2014
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
Scalable placement and routing for modern FPGAs
现代 FPGA 的可扩展布局和布线
  • 批准号:
    228109-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325312
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
FMSG: Eco: Field Assisted Nano Assembly System (FANAS) for Next-Generation Photonics and Quantum Computing
FMSG:Eco:用于下一代光子学和量子计算的现场辅助纳米组装系统 (FANAS)
  • 批准号:
    2328096
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325310
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
REU Site: The Summer Systematics Institute: training the next generation of scientists for the field, the lab, and sharing their science with the world
REU 网站:夏季系统学研究所:为该领域、实验室培训下一代科学家,并与世界分享他们的科学成果
  • 批准号:
    2243994
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Continuing Grant
Development of aluminum stabilized HTS coils for next-generation magnets with high radiation resistance and high magnetic field
开发用于下一代高抗辐射和高磁场磁体的铝稳定高温超导线圈
  • 批准号:
    23H03665
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Characterizing Climate Change Feedbacks in Arctic Ponds while Incorporating Next-Generation Technologies and Arctic Field Experiences in Education
职业:描述北极池塘的气候变化反馈,同时将下一代技术和北极实地经验融入教育中
  • 批准号:
    2239038
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
  • 批准号:
    2316701
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship Award
Ultra-high brightness liquid metal field emission cathode for Next generation
下一代超高亮度液态金属场致发射阴极
  • 批准号:
    22H01955
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next Generation Visual Field Testing: Development and Testing of The Toronto Portable Perimeter (TPP)
下一代视野测试:多伦多便携式周界仪 (TPP) 的开发和测试
  • 批准号:
    569311-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了