Graph Neural Networks for Transit Passenger Flow Prediction
用于公交客流预测的图神经网络
基本信息
- 批准号:RGPIN-2022-04679
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The transportation sector is the second largest contributor to GHG emissions in Canada. Public Transportation is key to Canada's goals to reduce GHG emissions in the future. Improving transit services can thus help attract people towards public transportation thereby contributing to transportation sector emissions reductions. A key contributing factor to improving transit operations is the reduction of crowding on buses. Central to being able to do this is being able to accurately predict passenger levels on buses so that transit operators can adjust their operations to manage and reduce crowding. At the same time, the past twenty years has seen extraordinary advances in the development and use of Artificial Intelligence and "deep learning" techniques. Many of the advances from these techniques are thanks to the use of convolutional neural networks (CNNs) in image processing and classification. These methods are well adapted to situations in which data can be represented in regular (e.g. grids) Euclidean space, but are less well adapted to situations (like transportation) in which data is more appropriately described as networks or "graphs" that include links (road segments) and nodes (intersections). Luckily, advances in deep learning based on CNNs have spurred innovations leading to the ability to use deep learning techniques with graphs and graph data. This has been done through advances in graph representation learning. Graph representation learning has enabled the power of convolutional neural networks to be applied to graph learning and thus to allow such deep learning techniques called Graph Neural Networks (or GNNs) to be applied to network related applications such as those in transportation. While there has been an explosion in the use of deep graph-based approaches in road performance prediction, transit has received less attention, and bus transit has been almost unexplored. The goal of this research program is to extend the use of GNNs in public transportation and particularly bus transportation to predict bus passenger levels using both historical and real-time Big Data in the form of automatic passenger counts and automatic vehicle location. This will help bring the power of deep learning to public transportation planning, make contributions in graph representation learning in transportation and computer science more broadly, and help Canada meet its GHG emissions goals.
运输部门是加拿大温室气体排放的第二大贡献者。公共交通是加拿大未来减少温室气体排放目标的关键。因此,改善过境服务有助于吸引人们使用公共交通,从而有助于减少交通部门的排放。改善过境业务的一个关键因素是减少公共汽车上的拥挤。能够做到这一点的核心是能够准确预测公交车上的乘客水平,以便公交运营商可以调整其运营以管理和减少拥挤。与此同时,在过去的二十年里,人工智能和“深度学习”技术的开发和使用取得了非凡的进步。这些技术的许多进步都归功于卷积神经网络(CNN)在图像处理和分类中的使用。这些方法很好地适应于数据可以在规则(例如网格)欧几里得空间中表示的情况,但不太适合于数据更适合描述为包括链接(路段)和节点(交叉点)的网络或“图”的情况(如运输)。幸运的是,基于CNN的深度学习的进步刺激了创新,从而能够将深度学习技术与图形和图形数据结合使用。这是通过图形表示学习的进步实现的。图表示学习使卷积神经网络的能力能够应用于图学习,从而允许这种称为图神经网络(或GNN)的深度学习技术应用于网络相关的应用,例如交通领域的应用。虽然在道路性能预测中使用基于深度图的方法已经出现了爆炸式增长,但公交却很少受到关注,公交车几乎没有被探索过。该研究计划的目标是扩展GNN在公共交通,特别是公交运输中的使用,以自动乘客计数和自动车辆定位的形式使用历史和实时大数据来预测公交乘客水平。这将有助于将深度学习的力量带到公共交通规划中,更广泛地为交通和计算机科学中的图形表示学习做出贡献,并帮助加拿大实现其温室气体排放目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patterson, Zachary其他文献
Application of Machine Learning to Child Mode Choice with a Novel Technique to Optimize Hyperparameters.
- DOI:
10.3390/ijerph192416844 - 发表时间:
2022-12-15 - 期刊:
- 影响因子:0
- 作者:
Naseri, Hamed;Waygood, Edward Owen Douglas;Wang, Bobin;Patterson, Zachary - 通讯作者:
Patterson, Zachary
Modeling the Effect of Land Use on Activity Spaces
- DOI:
10.3141/2323-08 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:1.7
- 作者:
Harding, Christopher;Patterson, Zachary;Zahabi, Seyed Amir H. - 通讯作者:
Zahabi, Seyed Amir H.
Potential Path Areas and Activity Spaces in Application: A Review
- DOI:
10.1080/01441647.2015.1042944 - 发表时间:
2015-11-02 - 期刊:
- 影响因子:9.8
- 作者:
Patterson, Zachary;Farber, Steven - 通讯作者:
Farber, Steven
A Qualitative Application of the Belsky Model to Explore Early Care and Education Teachers' Mealtime History, Beliefs, and Interactions
- DOI:
10.1016/j.jneb.2017.04.025 - 发表时间:
2017-07-01 - 期刊:
- 影响因子:2.6
- 作者:
Swindle, Taren M.;Patterson, Zachary;Boden, Carrie J. - 通讯作者:
Boden, Carrie J.
Activity patterns mining in Wi-Fi access point logs
- DOI:
10.1016/j.compenvurbsys.2017.09.004 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:6.8
- 作者:
Poucin, Guilhem;Farooq, Bilal;Patterson, Zachary - 通讯作者:
Patterson, Zachary
Patterson, Zachary的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patterson, Zachary', 18)}}的其他基金
The contribution of grehlin to stress induced metabolic alterations
Grehlin 对应激诱导的代谢改变的贡献
- 批准号:
393139-2010 - 财政年份:2012
- 资助金额:
$ 2.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The contribution of grehlin to stress induced metabolic alterations
Grehlin 对应激诱导的代谢改变的贡献
- 批准号:
393139-2010 - 财政年份:2011
- 资助金额:
$ 2.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The contribution of grehlin to stress induced metabolic alterations
Grehlin 对应激诱导的代谢改变的贡献
- 批准号:
393139-2010 - 财政年份:2010
- 资助金额:
$ 2.62万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Efficient and accurate scaling Graph Neural Networks for giant graphs
针对巨型图的高效、准确的缩放图神经网络
- 批准号:
24K20787 - 财政年份:2024
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
III: Small: 3D Graph Neural Networks: Completeness, Efficiency, and Applications
III:小:3D 图神经网络:完整性、效率和应用
- 批准号:
2243850 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
CRII: SaTC: Towards Understanding the Robustness of Graph Neural Networks against Graph Perturbations
CRII:SaTC:了解图神经网络对抗图扰动的鲁棒性
- 批准号:
2241713 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Graph Neural Networks for High Energy Physics
高能物理的图神经网络
- 批准号:
2869973 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Studentship
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
CAREER: Towards Responsible Graph Neural Networks
职业:迈向负责任的图神经网络
- 批准号:
2238616 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 2.62万 - 项目类别:
Standard Grant