Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
基本信息
- 批准号:RGPIN-2020-04620
- 负责人:
- 金额:$ 3.5万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Could energy intensive chemical reactions such as CO2 reduction and steam reforming be performed close to room temperature using light as the energy source? Could the hydrogen economy be realized within the next 5-10 years through efficient sunlight-driven water-splitting ? How do quantum quasiparticles such as excitons, plasmons and phonons interact in the context of heterogeneous catalysis? Could we reduce civilization's extraordinary reliance on precious metals such as platinum, palladium, gold and silver for a range of catalytic reactions? These are the sorts of scientific questions and technological possibilities that the research program described in this proposal seeks to examine and answer. At the heart of this research are plasmonic nanoparticles, and their heterojunctions with semiconductors and pi-conjugated dye molecules. Plasmons are collective and coherent oscillations of the free electron gas in metals. In metal nanoparticles, the spatial confinement of collective excitations of electrons at the metal-dielectric interface result in strong localized surface plasmon resonances (LSPR). LSPR resonances at visible & near-infrared wavelengths are desired for photocatalytic applications. Nanoparticles of a handful of materials such as Ag, Au, Cu, Al, TiN, ZrN and Cu2S have been shown to have LSPR peaks in the visible and near-infrared. Surface plasmons decay in femtoseconds through either Landau damping (LD) or chemical interface damping (CID) to form hot electron-hole pairs with energies much higher than what would be expected from a Boltzmann distribution. Therefore, hot carriers are particularly attractive as agents of chemical transformation in order to drive chemical reactions such as water-splitting to generate H2, reduction of CO2 into value-added products, synthesis of azo dyes, ammonia synthesis, hydrocarbon reforming, photooxidation of organic compounds, etc. However, hot electrons experience electron-electron scattering over ~ 100 fs timescales and collisions with phonons over ~ 1 ps timescales resulting in very fast relaxation to a purely thermal carrier distribution. The key technological challenge that this proposal seeks to address is to how to shuttle the hot electrons away from the metal and get them to drive a chemical reaction before their excess energies are lost to a variety of dissipation processes. Heterojunctions of plasmonic metal nanoparticles (nanoprisms, nanocubes, nanoshells, etc) with inorganic semiconductors and pi-conjugated organic dyes, offer the most promising routes for efficient separation and exploitation of plasmonic hot carriers. The underlying physical processes at these heterojunctions are not completely understood. We also seek to advance our fundamental scientific understanding of plasmonic metal-semiconductor heterojunctions. The research in this proposal has the potential to impact the $5 billion semiconductor photocatalysis industry and the $30 billion global catalyst industry (2018).
能源密集型化学反应,如CO2还原和蒸汽重整,可以在接近室温的条件下使用光作为能源进行吗?氢经济能否在未来5-10年内通过高效的阳光驱动水分解实现?激子、等离子体激元和声子等量子准粒子在多相催化中是如何相互作用的?我们能否减少文明对铂、钯、金和银等贵金属在一系列催化反应中的过度依赖?这些都是本提案中描述的研究计划试图研究和回答的科学问题和技术可能性。这项研究的核心是等离子体纳米粒子,以及它们与半导体和π共轭染料分子的异质结。等离子体激元是金属中自由电子气的集体和相干振荡。在金属纳米颗粒中,电子的集体激发在金属-电介质界面处的空间限制导致强的局部表面等离子体共振(LSPR)。在可见光和近红外波长下的LSPR共振对于光催化应用是期望的。一些材料如Ag、Au、Cu、Al、TiN、ZrN和Cu 2S的纳米颗粒已经显示出在可见光和近红外中具有LSPR峰。表面等离子体通过朗道阻尼(LD)或化学界面阻尼(CID)在飞秒内衰减,形成热电子-空穴对,其能量远高于玻尔兹曼分布的预期。因此,热载体作为化学转化的试剂特别有吸引力,以驱动化学反应,例如水裂解以产生H2、将CO2还原成增值产物、偶氮染料的合成、氨合成、烃重整、有机化合物的光氧化等。热电子在~ 100 fs时间尺度上经历电子-电子散射,在~ 1 ps时间尺度上经历与声子的碰撞,导致非常快地弛豫到纯热载流子分布。该提案寻求解决的关键技术挑战是如何将热电子从金属中穿梭出来,并在其多余的能量损失到各种耗散过程之前让它们驱动化学反应。等离子体金属纳米粒子(纳米棱镜、纳米立方体、纳米壳等)与无机半导体和π共轭有机染料的异质结为等离子体热载流子的有效分离和开发提供了最有前途的途径。这些异质结的基本物理过程尚未完全了解。我们还寻求推进我们对等离子体金属-半导体异质结的基本科学理解。该提案中的研究有可能影响50亿美元的半导体封装行业和300亿美元的全球催化剂行业(2018年)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shankar, Karthik其他文献
Enhanced charge separation in g-C(3)N(4)-BiOI heterostructures for visible light driven photoelectrochemical water splitting.
- DOI:
10.1039/c8na00264a - 发表时间:
2019-04-09 - 期刊:
- 影响因子:4.7
- 作者:
Alam, Kazi M.;Kumar, Pawan;Kar, Piyush;Thakur, Ujwal K.;Zeng, Sheng;Cui, Kai;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Zinc phthalocyanine conjugated cellulose nanocrystals for memory device applications
- DOI:
10.1088/1361-6528/ac2e78 - 发表时间:
2022-01-29 - 期刊:
- 影响因子:3.5
- 作者:
Chaulagain, Narendra;Alam, Kazi M.;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy
- DOI:
10.1016/j.carbpol.2020.116393 - 发表时间:
2020-10-15 - 期刊:
- 影响因子:11.2
- 作者:
Goswami, Ankur;Alam, Kazi M.;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Transparent Anodic TiO2 Nanotube Arrays on Plastic Substrates for Disposable Biosensors and Flexible Electronics
- DOI:
10.1166/jnn.2013.7409 - 发表时间:
2013-04-01 - 期刊:
- 影响因子:0
- 作者:
Farsinezhad, Samira;Mohammadpour, Arash;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunlight-driven water-splitting
- DOI:
10.1088/1361-6528/ab4e2c - 发表时间:
2020-02-14 - 期刊:
- 影响因子:3.5
- 作者:
Alam, Kazi M.;Kumar, Pawan;Shankar, Karthik - 通讯作者:
Shankar, Karthik
Shankar, Karthik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shankar, Karthik', 18)}}的其他基金
Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
- 批准号:
RGPIN-2020-04620 - 财政年份:2021
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Plasmonic and Plexcitonic Nanomaterials in Industrial Catalysis
在工业催化中利用等离子和有机纳米材料
- 批准号:
RGPIN-2020-04620 - 财政年份:2020
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Advanced resonator - and imaging-based characterization of morphology and aggregation in CNCs and CFs
CNC 和 CF 中基于先进谐振器和成像的形态和聚集表征
- 批准号:
492027-2015 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2019
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Advanced resonator - and imaging-based characterization of morphology and aggregation in CNCs and CFs
CNC 和 CF 中基于先进谐振器和成像的形态和聚集表征
- 批准号:
492027-2015 - 财政年份:2018
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Nanostructured ceramic coatings engineered for reduction of corrosion, erosion, fouling and viscous drag in industrial pipes and tubes
纳米结构陶瓷涂层旨在减少工业管道中的腐蚀、侵蚀、结垢和粘性阻力
- 批准号:
478987-2015 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Strategic Projects - Group
Advanced resonator - and imaging-based characterization of morphology and aggregation in CNCs and CFs
CNC 和 CF 中基于先进谐振器和成像的形态和聚集表征
- 批准号:
492027-2015 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Collaborative Research and Development Grants
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2017
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
Solution-grown Nanowire and Nanotube Arrays, and Ordered Hybrid Nanoarchitectures incorporating them
溶液生长的纳米线和纳米管阵列,以及包含它们的有序混合纳米结构
- 批准号:
RGPIN-2015-06630 - 财政年份:2016
- 资助金额:
$ 3.5万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Plasmonic纳米孔光电同步传感用于肿瘤细胞外泌体单颗粒多参数检测的研究
- 批准号:22304162
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于协同耦合策略构筑超灵敏plasmonic PEC纳米生物传感器的研究
- 批准号:22004002
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
细菌视紫红质/Ag-M plasmonic杂化纳米生物电极用于痕量TNT电化学检测
- 批准号:21605057
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于外在超手性Plasmonic纳米结构的生物分子构象传感技术研究
- 批准号:11604227
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于plasmonic杂化纳米结构的新型化学和生物传感研究
- 批准号:21475125
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
单个固态plasmonic纳米孔基单分子电分析化学研究
- 批准号:21175125
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
- 批准号:
EP/Y037294/1 - 财政年份:2025
- 资助金额:
$ 3.5万 - 项目类别:
Research Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Fabrication of chiral plasmonic nanogaps by hot electron-induced metal growth for enhanced enantioselective light-matter interactions
通过热电子诱导金属生长制造手性等离子体纳米间隙以增强对映选择性光-物质相互作用
- 批准号:
23K23191 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
- 批准号:
EP/Z000912/1 - 财政年份:2024
- 资助金额:
$ 3.5万 - 项目类别:
Fellowship
Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
- 批准号:
10076382 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Grant for R&D
A ultra-sensitive infrared plasmonic-thermoelectric system
超灵敏红外等离子体热电系统
- 批准号:
23H01785 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of photonic reaction field based on collectrive behaviour of plasmonic particles using quntum coherence
利用量子相干性基于等离子体粒子的集体行为创建光子反应场
- 批准号:
23H01916 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum dot emission from plasmonic nanocavities
等离子体纳米腔的量子点发射
- 批准号:
2885938 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Studentship
EAGER: Enhancing plasmonic mode coupling in metal insulator metal structures
EAGER:增强金属绝缘体金属结构中的等离子体模式耦合
- 批准号:
2334968 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant
Maximizing the Harvesting of Photogenerated Electron-Hole Pairs in Hybrid Plasmonic Nanosystems
最大化混合等离子体纳米系统中光生电子空穴对的收获
- 批准号:
2304910 - 财政年份:2023
- 资助金额:
$ 3.5万 - 项目类别:
Standard Grant