A novel approach for landform classification based on salience detection integrating expert knowledge and deep learning

结合专家知识和深度学习的基于显着性检测的地貌分类新方法

基本信息

  • 批准号:
    RGPIN-2022-03885
  • 负责人:
  • 金额:
    $ 1.89万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

For several years, advances in data acquisition in geomatics have made it possible to acquire very high-resolution data over very large areas. In particular, we now have digital terrain models at unequaled levels of detail for the analysis of relief and the environment. However, this requires robust and automatic processing methods. Among other issues, the detection and analysis of landforms remains a difficult problem. A landform is the result of geomorphological processes in a specific context. Its definition is inherently vague and current methods are therefore specific to certain types of data and certain landforms. Lately, progress has been made thanks to deep learning methods coming from image processing, but they are difficult to generalize. We therefore propose a new approach based on salient elements of the terrain: a landform is not characterised by morphometric criteria but by saliences, following the cognitive approach performed by geomorphologists. These saliences are included in a network (graph) of points (peaks, pits) and lines (thalwegs, ridges) which describes the terrain. The objective of this research program is to propose new methods for landform detection based on deep learning techniques on graphs. We consider that this approach is more robust since it is less dependent on the terrain model resolution and that it makes it possible to more easily integrate the descriptions made by the experts. A limit to the learning methods is to have data where saliences have already been labelled. Such data are rarely available and their construction is tedious. Three objectives are therefore proposed for this program: 1- Provide a methodology to calculate the required salience properties automatically from expert knowledge and the database and integrates them into a deep neural network. 2- Design an application for automatic classification of saliences from a graph in a semi-supervised way. Only part of the data is labelled and the system must derive classification rules from it. 3- Design an application for automatic classification of saliences from a graph in an unsupervised way. Data are not labelled and the detection depends entirely on the quality of the definition provided by experts. Several case studies on various forms (moraines, glacial valleys, landslide zones) will be used to validate the methods. This project will train eight highly qualified persons. It will provide a new approach to landform analysis that can be used by geomorphologists and environmental experts and will allow them to analyse large datasets for a better understanding of environmental phenomena.
几年来,地理信息学数据采集方面的进展使人们有可能在非常大的区域内采集非常高分辨率的数据。特别是,我们现在有数字地形模型在无与伦比的细节水平的地形和环境的分析。然而,这需要稳健的自动处理方法。除其他问题外,地貌的探测和分析仍然是一个难题。地貌是特定环境下地貌过程的结果。它的定义本质上是模糊的,因此目前的方法是特定于某些类型的数据和某些地形。最近,由于来自图像处理的深度学习方法,已经取得了进展,但它们很难推广。因此,我们提出了一种新的方法的基础上显着的地形要素:地形的特点是不形态标准,但显着性,以下的认知方法进行的地貌学家。这些突出部分被包含在描述地形的点(峰、坑)和线(深线、山脊)的网络(图)中。该研究计划的目标是提出基于图上深度学习技术的地形检测新方法。我们认为,这种方法是更强大的,因为它是较少依赖于地形模型的分辨率,它使得有可能更容易地集成由专家的描述。学习方法的一个限制是具有已经标记了显着性的数据。这样的数据很少,其建设是乏味的。因此,该计划提出了三个目标:1-提供一种方法,从专家知识和数据库中自动计算所需的显着性属性,并将其集成到深度神经网络中。2-设计一个应用程序,以半监督的方式从图中自动分类显著性。只有部分数据被标记,系统必须从中导出分类规则。3-设计一个应用程序,以无监督的方式自动分类图中的显著性。数据没有标记,检测完全取决于专家提供的定义的质量。对各种形式(冰碛、冰川谷、滑坡带)的若干案例研究将用于验证这些方法。该项目将培养8名高素质人才。它将为地貌学家和环境专家提供一种新的地貌分析方法,使他们能够分析大型数据集,更好地了解环境现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guilbert, Eric其他文献

Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach
  • DOI:
    10.1016/j.crvi.2014.12.004
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Kocher, Arthur;Guilbert, Eric;Murienne, Jerome
  • 通讯作者:
    Murienne, Jerome
Phylogeny of the lacebugs (Insecta: Heteroptera: Tingidae) using morphological and molecular data
  • DOI:
    10.1111/syen.12045
  • 发表时间:
    2014-07-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Guilbert, Eric;Damgaard, Jakob;D'Haese, Cyrille A.
  • 通讯作者:
    D'Haese, Cyrille A.
Lace Bugs (Tingidae)
  • DOI:
    10.1007/978-94-017-9861-7_14
  • 发表时间:
    2015-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guidoti, Marcus;Montemayor, Sara I.;Guilbert, Eric
  • 通讯作者:
    Guilbert, Eric
Phylogenetic analysis and revision of subfamily classification of Belostomatidae genera (Insecta: Heteroptera: Nepomorpha)
  • DOI:
    10.1093/zoolinnean/zlx041
  • 发表时间:
    2018-02-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Ribeiro, Jose Ricardo I.;Ohba, Shin-Ya;Guilbert, Eric
  • 通讯作者:
    Guilbert, Eric
The Reduviidae (Hemiptera: Heteroptera) of Ipassa Reserve (Makokou, Gabon)
  • DOI:
    10.11646/zootaxa.2157.1.2
  • 发表时间:
    2009-07-14
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Guilbert, Eric;Chlond, Dominik
  • 通讯作者:
    Chlond, Dominik

Guilbert, Eric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guilbert, Eric', 18)}}的其他基金

Description and classification of generic landforms: from words to concepts for digital use and decision support
一般地貌的描述和分类:从文字到数字使用和决策支持的概念
  • 批准号:
    RGPIN-2016-05129
  • 财政年份:
    2021
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Description and classification of generic landforms: from words to concepts for digital use and decision support
一般地貌的描述和分类:从文字到数字使用和决策支持的概念
  • 批准号:
    RGPIN-2016-05129
  • 财政年份:
    2020
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Description and classification of generic landforms: from words to concepts for digital use and decision support
一般地貌的描述和分类:从文字到数字使用和决策支持的概念
  • 批准号:
    RGPIN-2016-05129
  • 财政年份:
    2019
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Classification des points au sol dans des nuages de points LiDAR aéroporté par apprentissage profond
机场激光雷达点的分类
  • 批准号:
    537375-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Plus Grants Program
Description and classification of generic landforms: from words to concepts for digital use and decision support
一般地貌的描述和分类:从文字到数字使用和决策支持的概念
  • 批准号:
    RGPIN-2016-05129
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Classification des points au sol dans des données lidar aéroporté par apprentissage supervisé
学徒监督激光雷达机场太阳点分类
  • 批准号:
    531444-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Description and classification of generic landforms: from words to concepts for digital use and decision support
一般地貌的描述和分类:从文字到数字使用和决策支持的概念
  • 批准号:
    RGPIN-2016-05129
  • 财政年份:
    2017
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual
Validation automatique de grands ensembles de données hydrographiques
水文大集合自动验证
  • 批准号:
    500753-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Engage Grants Program
Description and classification of generic landforms: from words to concepts for digital use and decision support
一般地貌的描述和分类:从文字到数字使用和决策支持的概念
  • 批准号:
    RGPIN-2016-05129
  • 财政年份:
    2016
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

量化 domain 的拓扑性质
  • 批准号:
    11771310
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
  • 批准号:
    50908133
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
  • 批准号:
    50671047
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
  • 批准号:
    30470298
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding The Political Representation of Men: A Novel Approach to Making Politics More Inclusive
了解男性的政治代表性:使政治更具包容性的新方法
  • 批准号:
    EP/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Research Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
  • 批准号:
    2332534
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
  • 批准号:
    2305462
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Fellowship Award
「生きづらさ」を抱える妊産婦に対するnon-stigmatizing approachの開発
为正在经历“生活困难”的孕妇制定一种非侮辱性的方法
  • 批准号:
    24K14025
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
  • 批准号:
    24K20789
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
  • 批准号:
    24K20168
  • 财政年份:
    2024
  • 资助金额:
    $ 1.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了