3D Bioprinting of Cardiac Tissues

心脏组织的 3D 生物打印

基本信息

  • 批准号:
    RGPIN-2021-03960
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Chronic cardiovascular diseases such as heart failure is increasing to epidemic levels, affecting 1 in 5 Canadians. The left ventricle has no significant ability to regenerate and the viable tissue remaining after myocardial infarction is often insufficient to maintain adequate cardiac output. Heart transplant is very often not an available or appropriate option. Thus, there is a pressing need for alternative intervention. The long-term goal of this research program is to develop and utilize advanced biofabrication techniques integrated with insights from developmental biology to build engineered 3D in vitro models for predictive drug discovery and to create functional tissue-engineered implants for regeneration. Adult cardiomyocytes have a limited ability to proliferate, thus stem cells must be used as their source. The ability to generate cardiovascular lineages from human induced pluripotent stem cells and recent advances in 3D bioprinting, provide an unprecedented opportunity to establish human in vitro models of cardiovascular diseases (i.e. heart-on-a-chip models) as well as to develop autologous replacement left ventricle. 3D bioprinting allows precise layer-by-layer positioning of biomaterials (i.e. bioinks) and living cells, with spatial control of the placement of functional components to fabricate 3D functional living cardiac tissues with structural, biological, and mechanical properties that are very similar to those of native tissues. The 5-year goals of this research program are to: 1) fabricate and characterize 3D vascularized left ventricle using 3D bioprinting technology; and 2) fabricate and characterize 3D bioprinted heart-on-a-chip platforms. Therefore, we will develop and characterize a 3D bioprinted:1) sheet-like vascularized artificial left ventricle to accelerate regeneration; 2) ring-like structure as a 3D in vitro model for drug discovery and screening applications. The 3D bioprinted artificial vascularized left ventricle (sheet-like structures) will eventually be capable of synchronous contraction in response to electrical stimulation. In a more immediate term, the 3D bioprinted ring-like structures will provide high fidelity models for drug discovery and testing. This model has the potential to test cardiac toxicity with more precision and efficiency, due to the faithfully mimicking the hallmarks of human physiology. Given that cardiac toxicity is a major hurdle to bring novel drugs to market, our in vitro model can transform the drug development process. Furthermore, our in vitro model is compatible with precision medicine to test drugs in a more personalized environment and shed light to the underlying molecular mechanisms. Overall, it is foreseen that the outcome of this research program will constitute important steps towards providing human functional tissues for regeneration and in vitro modelling.
慢性心血管疾病,如心力衰竭,正在增加到流行病的程度,影响五分之一的加拿大人。左心室没有明显的再生能力,心肌梗死后剩余的活组织往往不足以维持足够的心输出量。心脏移植通常不是一个可行或合适的选择。因此,迫切需要替代干预措施。该研究项目的长期目标是开发和利用先进的生物制造技术,结合发育生物学的见解,建立工程3D体外模型,用于预测药物发现,并创建用于再生的功能性组织工程植入物。成人心肌细胞的增殖能力有限,因此必须使用干细胞作为其来源。从人类诱导多能干细胞产生心血管谱系的能力以及生物3D打印的最新进展,为建立人类体外心血管疾病模型(即心脏芯片模型)以及开发自体替代左心室提供了前所未有的机会。3D生物打印允许对生物材料(即生物墨水)和活细胞进行精确的逐层定位,并对功能组件的放置进行空间控制,以制造具有结构、生物和机械特性的3D功能性活心脏组织,这些组织与天然组织非常相似。该研究计划的5年目标是:1)利用3D生物打印技术制造和表征3D血管化左心室;2)制造和表征3D生物打印的芯片心脏平台。因此,我们将开发和表征3D生物打印:1)片状血管化人工左心室加速再生;2)环状结构作为药物发现和筛选的三维体外模型。3D生物打印的人造血管化左心室(片状结构)最终将能够响应电刺激而同步收缩。在更短期内,3D生物打印的环状结构将为药物发现和测试提供高保真模型。由于该模型忠实地模仿了人体生理学的特征,因此具有更精确和更有效地测试心脏毒性的潜力。鉴于心脏毒性是将新药推向市场的主要障碍,我们的体外模型可以改变药物开发过程。此外,我们的体外模型与精准医学兼容,可以在更个性化的环境中测试药物,并揭示潜在的分子机制。总的来说,可以预见的是,这项研究计划的结果将为提供用于再生和体外建模的人类功能组织迈出重要的一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Savoji, Houman其他文献

Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes
  • DOI:
    10.1007/s11814-010-0437-7
  • 发表时间:
    2011-03-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chenar, Mahdi Pourafshari;Savoji, Houman;Tabe, Shahram
  • 通讯作者:
    Tabe, Shahram
Novel surface modifying macromolecules (SMMs) blended polysulfone gas separation membranes by phase inversion technique
  • DOI:
    10.1002/app.34809
  • 发表时间:
    2012-05-05
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Savoji, Houman;Rana, Dipak;Tabe, Shahram
  • 通讯作者:
    Tabe, Shahram
In Vitro and Pilot In Vivo Evaluation of a Bioactive Coating for Stent Grafts Based on Chondroitin Sulfate and Epidermal Growth Factor
Electrospun Nanofiber Scaffolds and Plasma Polymerization: A Promising Combination Towards Complete, Stable Endothelial Lining for Vascular Grafts
  • DOI:
    10.1002/mabi.201300545
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Savoji, Houman;Hadjizadeh, Afra;Lerouge, Sophie
  • 通讯作者:
    Lerouge, Sophie
3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding
  • DOI:
    10.1021/acsbiomaterials.9b00676
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Savoji, Houman;Huyer, Locke Davenport;Radisic, Milica
  • 通讯作者:
    Radisic, Milica

Savoji, Houman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Savoji, Houman', 18)}}的其他基金

Sound-Induced 3D Biofabrication and Morphogenesis
声诱导 3D 生物制造和形态发生
  • 批准号:
    RTI-2022-00539
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Tools and Instruments
3D Bioprinting of Cardiac Tissues
心脏组织的 3D 生物打印
  • 批准号:
    RGPIN-2021-03960
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
3D Bioprinting of Cardiac Tissues
心脏组织的 3D 生物打印
  • 批准号:
    DGECR-2021-00337
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Novel minimally-invasive in-situ 3D bioprinting platform for cardiac regeneration
用于心脏再生的新型微创原位3D生物打印平台
  • 批准号:
    EP/X027287/2
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
  • 批准号:
    10753836
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
Novel minimally-invasive in-situ 3D bioprinting platform for cardiac regeneration
用于心脏再生的新型微创原位3D生物打印平台
  • 批准号:
    EP/X027287/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Fellowship
3D Bioprinting of Cardiac Tissues
心脏组织的 3D 生物打印
  • 批准号:
    RGPIN-2021-03960
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Grants Program - Individual
3D Bioprinting of Cardiac Tissues
心脏组织的 3D 生物打印
  • 批准号:
    DGECR-2021-00337
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Discovery Launch Supplement
Bioprinting A Physiologically Aligned, Thick Cardiac Tissue for Regenerative Medicine
生物打印生理排列的厚心肌组织用于再生医学
  • 批准号:
    9760107
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
Bioprinting A Physiologically Aligned, Thick Cardiac Tissue for Regenerative Medicine
生物打印生理排列的厚心肌组织用于再生医学
  • 批准号:
    10020770
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
Bioprinting A Physiologically Aligned, Thick Cardiac Tissue for Regenerative Medicine
生物打印生理排列的厚心肌组织用于再生医学
  • 批准号:
    10245085
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
Extracellular matrix regulation of differentiation via modulation of ILK: application to 3D bioprinting of cardiac tissue
通过调节 ILK 进行细胞外基质分化调节:在心脏组织 3D 生物打印中的应用
  • 批准号:
    10001078
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
Extracellular matrix regulation of differentiation via modulation of ILK: application to 3D bioprinting of cardiac tissue
通过调节 ILK 进行细胞外基质分化调节:在心脏组织 3D 生物打印中的应用
  • 批准号:
    9301966
  • 财政年份:
    2017
  • 资助金额:
    $ 2.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了