Centre for Explainable Data Analytics (CEDA) for Developing Intelligent Systems for Small and Medium Sized Enterprises in Greater Toronto Area
可解释数据分析中心(CEDA)为大多伦多地区中小企业开发智能系统
基本信息
- 批准号:555944-2020
- 负责人:
- 金额:$ 29.14万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:College and Community Innovation Program
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Toronto is Canada's largest technology hub and the third largest in North America. It is home to over 48,000 retail businesses employing over 1.5 million people and generating over $9 billion in annual revenue. Most Canadian businesses are now shifting towards a data-driven retailing approach, which empowers the detailed, intelligent analysis of financial, social and consumer data for making critical business decisions, monetize opinions, improve products and increase revenue. Trending technologies in cloud data storage, virtual analytics and social media marketing have led to an astronomical growth in the amount of consumer data which is being generated for Canadian businesses. Although the current COVID pandemic crisis has led to an economic slowdown in most industry verticals, the pivoting of retailers to online shopping and marketing has led to creating numerous opportunities in analytics market. This has also led to an increased demand of digital transformation technologies, online and remote services awareness of the value of customer data. Using the customer data is very important for building new business models but many companies face technical challenges in embracing this shift. Centennial College's Centre for Explainable Data Analytics (CEDA) will empower these businesses by developing newer technologies in explainable data analytics and designing applications and solutions to provide a stronger footing in the data-driven market. The CEDA will assist Toronto's SMEs to adopt new approaches to designing and developing data enabled business systems with better customer preferences understanding, computing platforms and alternative user interfaces that are shaped by technology. CEDA is built on the already developed applied research capacity and Software Engineering Technology programs at Centennial College. NSERC investment will enable engaging more students and faculty on various industry-collaborated initiatives, boosting the overall applied research capacity of the College and supporting GTA-based SMEs for their growth and innovation.
多伦多是加拿大最大的科技中心,也是北美第三大科技中心。它拥有超过48,000家零售企业,雇用超过150万人,年收入超过90亿美元。大多数加拿大企业现在正在转向数据驱动的零售方式,这种方式可以对财务、社会和消费者数据进行详细、智能的分析,以做出关键的商业决策,将意见货币化,改进产品和增加收入。云数据存储、虚拟分析和社交媒体营销的趋势技术导致加拿大企业产生的消费者数据量出现了天文数字般的增长。尽管当前的COVID大流行危机导致大多数垂直行业的经济放缓,但零售商转向在线购物和营销,为分析市场创造了众多机会。这也导致了对数字化转型技术的需求增加,在线和远程服务对客户数据价值的认识。使用客户数据对于建立新的商业模式非常重要,但许多公司在接受这一转变时面临技术挑战。Centennial College的可解释数据分析中心(CEDA)将通过开发可解释数据分析方面的新技术,设计应用程序和解决方案,为这些企业提供更强大的基础。CEDA将协助多伦多的中小企业采用新的方法来设计和开发数据驱动的商业系统,更好地了解客户的喜好,计算平台和替代的用户界面,由技术塑造。CEDA建立在百年学院已经发展的应用研究能力和软件工程技术课程的基础上。NSERC的投资将使更多的学生和教师参与各种行业合作计划,提高学院的整体应用研究能力,并支持基于GTA的中小企业的增长和创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyagi, PurnimaPT其他文献
Tyagi, PurnimaPT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyagi, PurnimaPT', 18)}}的其他基金
Wearable, Interactive, and Mobile Technologies Access Centre in Healthcare (WIMTACH)
医疗保健可穿戴、交互式和移动技术访问中心 (WIMTACH)
- 批准号:
468609-2019 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Technology Access Centre
Research, Design and Implementation of Security and Migration Strategy for Legacy System
遗留系统安全与迁移策略的研究、设计与实现
- 批准号:
571185-2021 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Applied Research and Development Grants - Level 2
Technology Solutions for Healthcare Management and Health Research and Promotion
医疗管理和健康研究与推广的技术解决方案
- 批准号:
546404-2019 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Extend Innovation Enhancement Grants
相似海外基金
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 29.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Explainable Machine Learning Platform for Single Cell Data Analysis
用于单细胞数据分析的可解释机器学习平台
- 批准号:
2313865 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Continuing Grant
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
- 批准号:
2321063 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Standard Grant
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
- 批准号:
10729965 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 29.14万 - 项目类别:
Data-efficient and explainable machine learning
数据高效且可解释的机器学习
- 批准号:
2644086 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Studentship
CAREER: Modeling Situated Intention during Nondeterministic Pedestrian-Vehicle Interactions through Explainable Compositional Learning of Naturalistic Driving Data
职业:通过自然驾驶数据的可解释组合学习,对非确定性行人-车辆交互过程中的情境意图进行建模
- 批准号:
2145565 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Continuing Grant
explainable AI, Data Analytics and Industrial Engineering Methods for Primary Care
用于初级保健的可解释的人工智能、数据分析和工业工程方法
- 批准号:
RGPIN-2019-05522 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Advancing Fair Data Mining via New Robust and Explainable Algorithms and Human-Centered Approaches
职业:通过新的稳健且可解释的算法和以人为本的方法推进公平数据挖掘
- 批准号:
2146091 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Standard Grant
CRII: III: Explainable Multi-Source Data Integration with Uncertainty
CRII:III:具有不确定性的可解释多源数据集成
- 批准号:
2153171 - 财政年份:2022
- 资助金额:
$ 29.14万 - 项目类别:
Standard Grant