Geometric Variational Problems and Rearrangement Inequalities

几何变分问题和重排不等式

基本信息

  • 批准号:
    RGPIN-2015-05436
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

This proposal presents a research agenda on non-local geometric variational problems. Non-local functionals arise in many places in Mathematical Physics and Geometry. For example, the Coulomb energy appears in Electrostatics, Celestial Mechanics and Quantum Mechanics, path integrals take the form of multiple convolutions, and interactions of particles are described by more complicated collision kernels in Statistical Mechanics.  Many of these functionals satisfy geometric inequalities. An important consequence is that their extremals, known as "ground states", are often rotationally symmetric. These inequalities can be viewed as functional versions of the Brunn-Minkowski inequality of convex geometry, and, by extension, the isoperimetric inequality.  A key problem is the geometric stability of nonlocal functionals --- a question with fundamental implications for continuum limits in Statistical Mechanics. Geometric stability results where a "deficit" (the deviation of a functional from its optimal value) controls some measure of "asymmetry" (the distance from the manifold of optimizers) have been established for many geometric functionals. Little is known for non-local functionals that involve convolutions, but there has been notable progress in the last two years.  Another fundamental problem concerns the stability of Riesz' rearrangement inequality in higher dimensions, which would imply new stability results for the Brunn-Minkowski inequality in the non-convex case. The ultimate generalization of Riesz' inequality to multiple integrals is the Brascamp-Lieb-Luttinger inequality. Stability for the BLL inequality will require to first classify the equality cases, a long-standing problem that has also seen very recent progress. Exensions of Riesz' rearrangement inequality to spheres will also be considered. Other topics topics in this proposal are the approximation of the symmetric decreasing rearrangement by sequences of simpler symmetrization, and the symmetry and variational characterization of dispersion-managed solitons. The proposed work seeks to address the questions described above, and to develop analytical tools that can be applied more broadly.
非局部泛函在数学、物理和几何中的许多地方都有涉及。例如,库仑能出现在静电学、天体力学和量子力学中,路径积分采用多重卷积的形式,粒子的相互作用在统计力学中用更复杂的碰撞核来描述。 许多这些泛函满足几何不等式。一个重要的结果是,它们的极端,称为“基态”,往往是旋转对称的。这些不等式可以被看作是凸几何中的Brunn-Minkowski不等式的函数形式,并且通过推广,可以看作是等周不等式。 一个关键问题是非局部泛函的几何稳定性-一个对统计力学中的连续极限具有根本意义的问题。几何稳定性的结果,其中“赤字”(偏离其最佳值的功能)控制一些措施的“不对称”(距离流形的优化)已被建立了许多几何泛函。对于涉及卷积的非局部泛函知之甚少,但在过去两年中有了显着的进展。 另一个基本问题是Riesz重排不等式在高维中的稳定性,这将意味着Brunn-Minkowski不等式在非凸情形下的新的稳定性结果。Riesz不等式在重积分上的最终推广是Brascamp-Lieb-Luttinger不等式。BLL不等式的稳定性将需要首先对平等情况进行分类,这是一个长期存在的问题,最近也取得了进展。Riesz重排不等式在球面上的推广也将被考虑。 本提案中的其他主题包括通过更简单的对称化序列对对称递减重排的近似,以及色散管理孤立子的对称性和变分特征。 拟议的工作旨在解决上述问题,并开发可更广泛应用的分析工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Burchard, Almut其他文献

A network calculus with effective bandwidth
  • DOI:
    10.1109/tnet.2007.896501
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Li, Chengzhi;Burchard, Almut;Liebeherr, Jorg
  • 通讯作者:
    Liebeherr, Jorg
Network-Layer Performance Analysis of Multihop Fading Channels
  • DOI:
    10.1109/tnet.2014.2360675
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Al-Zubaidy, Hussein;Liebeherr, Joerg;Burchard, Almut
  • 通讯作者:
    Burchard, Almut

Burchard, Almut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Burchard, Almut', 18)}}的其他基金

Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2015-05436
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2015-05436
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2015-05436
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2015-05436
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
  • 批准号:
    311685-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
  • 批准号:
    311685-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric variational problems and rearrangements inequalities
几何变分问题和重排不等式
  • 批准号:
    311685-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
  • 批准号:
    DE230100415
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
  • 批准号:
    2304432
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
  • 批准号:
    2143124
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
  • 批准号:
    RGPIN-2020-06826
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
  • 批准号:
    2044954
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Regularity and Singularity Issues in Geometric Variational Problems
几何变分问题中的正则性和奇异性问题
  • 批准号:
    2055686
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
  • 批准号:
    2105460
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了