Constructible groups and ramifications of JSJ theory
JSJ 理论的可构造群和分支
基本信息
- 批准号:RGPIN-2019-04319
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The discovery by Poincaré of fundamental groups showed that groups could capture aspects of topological spaces. This phenomenon goes both ways: topological spaces can also describe groups. This perspective lead to group presentations, a description given by generators and relations, making a group into a set of strings of symbols. This formalism enabled Dehn in the 1920s to pose the three fundamental algorithmic problems of group theory: the word problem (are two elements equal?), the conjugacy problem (are two elements conjugate?), and the isomorphism problem (are two groups isomorphic?). In the 1950s, Novikov proved that the word problem in general is undecidable. As a consequence, a systematic study of all group considering only presentations is not feasible. However, further taking into account the metric on a group induced by a presentation, as well as the topology of presentation complexes, has been a spectacularly successful approach for certain classes of groups, yielding solutions to Dehn's problems. This is geometric group theory, the study of groups as geometric objects. My research program consists of several interconnected projects in geometric group theory aimed at describing algebraic structure and finding algorithms, unified by the themes of constructible groups and JSJ theory. Constructible groups are groups that can be obtained from the trivial group by successive gluings, or amalgamations, along 2-ended subgroups. JSJ theory (named after Jaco-Shalen and Johansson) describes the ways in which a group can be decomposed as an amalgam of groups. Constructible groups are relatively well-understood. This research program aims to describe quasi-isometry and commensurability classes of constructible groups. This description is one of the few remaining open questions about these groups. The proposed method to pursue this investigation is a novel application of JSJ theory to quasi-isometric rigidity. Until now, the techniques used to prove quasi-isometric rigidity results applied to different kinds of groups. Fast algorithms, that will be implemented on computers, will also be developed for constructible groups. I will also continue building on my work on the isomorphism problem for relatively hyperbolic groups to solve the conjugacy problem in Out(Fn), an important open problem in my field that has withstood decades of attacks. An important component of the proposed approach is to exploit the fact that constructible groups actually play a key role in this problem. JSJ theory is powerful, but inaccessible. I will explore how the topic of the collapse of CAT(0) cube complexes can be used to unify and simplify many of the basic theorems of JSJ theory, as well as related results, while simultaneously providing generalizations of JSJ theory. This research program will therefore provide radically new perspectives on well-established concepts of geometric group theory, yielding unexpected and far-reaching applications.
Poincaré对基本群的发现表明,群可以捕捉到拓扑空间的各个方面。这种现象是双向的:拓扑空间也可以描述群。这种视角导致了组表示,这是由生成器和关系给出的描述,使组成为一组符号字符串。这种形式主义使Dehn在20世纪20年代提出了群论的三个基本算法问题:字问题(两个元素是否相等?)、共轭问题(两个元素是否共轭?)和同构问题(两个群是否同构?)。在20世纪50年代,诺维科夫证明了问题这个词总体上是不可判定的。因此,对所有群体进行仅考虑陈述的系统研究是不可行的。然而,进一步考虑由表示诱导的群上的度量以及表示复形的拓扑,对于某些类型的群来说一直是一个非常成功的方法,产生了Dehn问题的解决方案。这就是几何群论,把群作为几何对象来研究。我的研究计划包括几个相互关联的几何群论项目,旨在描述代数结构和寻找算法,以可构群和JSJ理论为主题统一起来。可构群是指由平凡群沿2端子群连续粘合或合并而成的群。JSJ理论(以Jaco-Shalen和Johansson命名)描述了将一个群分解为群的混合体的方法。可构造性群体相对容易理解。本研究的目的是刻划可构群的拟等距类和可公度类。这个描述是关于这些群体的为数不多的悬而未决的问题之一。提出的研究方法是JSJ理论在准等距刚性中的一种新的应用。到目前为止,用于证明准等距刚性结果的技术适用于不同类型的群。将在计算机上实现的快速算法也将被开发用于可构造群。我还将继续在我关于相对双曲群的同构问题的工作的基础上,解决Out(Fn)中的共轭问题,这是我所在领域中的一个重要的公开问题,经受住了数十年的攻击。提出的方法的一个重要组成部分是利用可构建群体实际上在这个问题中发挥关键作用这一事实。JSJ理论很强大,但很难理解。我将探索如何使用CAT(0)立方体复形的折叠这一主题来统一和简化JSJ理论的许多基本定理以及相关结果,同时提供JSJ理论的推广。因此,这一研究计划将为几何群论的成熟概念提供全新的视角,产生意想不到的和深远的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MathesonTouikan, Nicholas其他文献
MathesonTouikan, Nicholas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MathesonTouikan, Nicholas', 18)}}的其他基金
Constructible groups and ramifications of JSJ theory
JSJ 理论的可构造群和分支
- 批准号:
RGPIN-2019-04319 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Constructible groups and ramifications of JSJ theory
JSJ 理论的可构造群和分支
- 批准号:
RGPIN-2019-04319 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Trust in forensic science evidence in the criminal justice system: The experience of marginalised groups
刑事司法系统中对法医科学证据的信任:边缘群体的经历
- 批准号:
ES/Y010639/1 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Research Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
- 批准号:
2343087 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
- 批准号:
2414332 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Continuing Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
- 批准号:
2402553 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Conference: Zassenhaus Groups and Friends Conference 2024
会议:2024 年 Zassenhaus 团体和朋友会议
- 批准号:
2346615 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Standard Grant
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
- 批准号:
24K16928 - 财政年份:2024
- 资助金额:
$ 1.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




