Systematic approach to higher structures

更高结构的系统方法

基本信息

  • 批准号:
    RGPIN-2020-06779
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

During the last 25 years, tools originally coming from homotopy theory have appeared in many other areas of mathematics: in algebraic geometry [Voe03][TTV08][Lurb], in mathematical physics [BD95][SS11], in symplectic geometry [PTVV13], in logic and type theory [V+13], etc. Every time they brought either solutions to long standing open problems, or brand new perspectives. These new tools mostly revolve around the idea of higher categories or more generally of higher structures. They are a type of algebraic structures in which the axioms cannot be stated as mere equalities between the operations, but are new operations producing explicit "equivalence" between previously defined operations. These new operations also have to satisfy some 'axioms' again expressed as new operations and so on, encoding a very rich structure with operations of all dimensions. Despite the great success these ideas have met, they are also extremely difficult to use. Only experts in homotopy theory have been able to apply them, and this has considerably slowed down their development. Many mathematicians working in the fields where they have been used have also voiced complaints about this difficulty. The main long-term goal of my research is to develop new methods that will allow to work with higher structures in a simpler, more efficient and intuitive way. Typically, I aim to develop a framework to translate the intuitive way experts think about higher structures into precise and concrete mathematical statement, as automatically as possible. This would have a very significant impact on future uses of higher structures outside of homotopy theory, and potentially even outside of mathematics. I will use my grant to fund and train a group of HQP working on this problem, but also on the applications of these methods to the theory of higher categories itself and on applications of higher structures to other fields of mathematics. Those are new and active areas of mathematics, very rich in problems ideal for PhD or MSc students, which can teach them highly desired skill that are becoming increasingly useful in many area of mathematics. I also plan to apply these new methods to several long standing open problems in the area: - C.Simpson's strictification conjecture. - Hovey's problem of constructing a « model structures of model structures ». - The homotopy hypothesis for Grothendieck higher groupoids. I have already made significant progress on these problems, and have a concrete plan to solve the first two in the next 3 years. There are also many other problems in higher category theory that my HQP will work on.
在过去的25年里,工具最初来自同伦理论已经出现在许多其他领域的数学:在代数几何[Voe 03][TTV 08][Lurb],在数学物理[BD 95][SS 11],在辛几何[PTVV 13],在逻辑和类型理论[V+13]等,每次他们带来的解决方案长期存在的开放问题,或全新的观点。这些新工具大多围绕着更高类别或更普遍的更高结构的想法。它们是一种代数结构,其中的公理不能仅仅表示为运算之间的等式,而是在先前定义的运算之间产生显式“等价”的新运算。这些新的操作也必须满足一些“公理”,再次表示为新的操作等,编码一个非常丰富的结构与所有维度的操作。尽管这些想法取得了巨大的成功,但它们也极难使用。只有同伦理论的专家才能应用它们,这大大减缓了它们的发展。许多数学家在他们已经使用的领域工作也表达了对这种困难的抱怨。我研究的主要长期目标是开发新的方法,以更简单,更有效和直观的方式处理更高的结构。通常,我的目标是开发一个框架,将专家对更高结构的直观思考方式尽可能自动地转化为精确和具体的数学陈述。这将对未来在同伦理论之外,甚至可能在数学之外使用更高结构产生非常重大的影响。我将用我的赠款,以资助和培训一组HQP工作在这个问题上,但也对应用这些方法的理论更高的类别本身和应用程序的更高的结构,以其他领域的数学。这些都是新的和活跃的数学领域,非常丰富的问题,非常适合博士或硕士学生,这可以教他们高度期望的技能,在许多数学领域变得越来越有用。我还计划将这些新方法应用于该领域的几个长期存在的开放问题:- C.辛普森的严格化猜想。- Hovey的问题是如何构造一个“模型结构的模型结构”。- Grothendieck高等群胚的同伦假设。我已经在这些问题上取得了重大进展,并有一个具体的计划,在未来3年内解决前两个问题。在高级范畴理论中,还有许多其他的问题,我的HQP将致力于解决。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry, Simon其他文献

Clinical evaluation of automatic tube voltage selection in chest CT angiography
  • DOI:
    10.1007/s00330-013-2887-x
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Niemann, Tilo;Henry, Simon;Remy-Jardin, Martine
  • 通讯作者:
    Remy-Jardin, Martine
Minimally-invasive fully ultrasound-guided removal of nonpalpable single-rod contraceptive implant: Case report and technical description
  • DOI:
    10.1016/j.contraception.2020.01.006
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jacques, Thibaut;Henry, Simon;Cotten, Anne
  • 通讯作者:
    Cotten, Anne
Impact of iterative reconstruction on the diagnosis of acute pulmonary embolism (PE) on reduced-dose chest CT angiograms
  • DOI:
    10.1007/s00330-014-3393-5
  • 发表时间:
    2015-04-01
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Pontana, Franois;Henry, Simon;Remy-Jardin, Martine
  • 通讯作者:
    Remy-Jardin, Martine
Pediatric chest CT at 70 kVp: a feasibility study in 129 children
  • DOI:
    10.1007/s00247-014-3027-8
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Niemann, Tilo;Henry, Simon;Remy-Jardin, Martine
  • 通讯作者:
    Remy-Jardin, Martine

Henry, Simon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry, Simon', 18)}}的其他基金

Systematic approach to higher structures
更高结构的系统方法
  • 批准号:
    RGPIN-2020-06779
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Systematic approach to higher structures
更高结构的系统方法
  • 批准号:
    RGPIN-2020-06779
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Systematic approach to higher structures
更高结构的系统方法
  • 批准号:
    DGECR-2020-00366
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

量化 domain 的拓扑性质
  • 批准号:
    11771310
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于Riemann-Hilbert方法的相关问题研究
  • 批准号:
    11026205
  • 批准年份:
    2010
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目
MBR中溶解性微生物产物膜污染界面微距作用机制定量解析
  • 批准号:
    50908133
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
新型低碳马氏体高强钢在不同低温下解理断裂物理模型的研究
  • 批准号:
    50671047
  • 批准年份:
    2006
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
基于生态位理论与方法优化沙区人工植物群落的研究
  • 批准号:
    30470298
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Convoy: A Cultural approach of Navajo Youth to Biomedical Sciences
车队:纳瓦霍青年对生物医学科学的文化态度
  • 批准号:
    10664762
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
The source of quantum advantages: a unified approach to quantum resources of states and processes
量子优势的来源:状态和过程量子资源的统一方法
  • 批准号:
    22KF0067
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Promoting Youth-Centric Disaster Mental Health Preparedness (DMHP) in Higher Education: A Cross-National Exploratory Study of Out-of-Province/State and International College Students (17-24 Years of Age) in Halifax, NS, Canada and Boston, MA, U.S.A.
促进高等教育中以青少年为中心的灾难心理健康准备 (DMHP):针对加拿大新斯科舍省哈利法克斯、新斯科舍省和波士顿的省外/州和国际大学生(17-24 岁)的跨国探索性研究,
  • 批准号:
    495257
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Operating Grants
Positive STEM Experiences for Underrepresented and Rural 6-12th Graders: A Novel Approach to Pre-Collegiate Neuroscience using a Train-the-Trainer Model, Summer Immersion, and Sustained Mentorship
为代表性不足和农村 6-12 年级学生提供积极的 STEM 体验:利用培训师培训模型、暑期沉浸式学习和持续指导的大学预科神经科学新方法
  • 批准号:
    10665443
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Development of behavior modification approach using cognitive behavioral therapy for patients with higher brain dysfunction
使用认知行为疗法开发针对重度脑功能障碍患者的行为矫正方法
  • 批准号:
    23K02986
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanisms of septin-actin cytoskeletal crosstalk
septin-肌动蛋白细胞骨架串扰的机制
  • 批准号:
    10677181
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
Detailed molecular and structural characterization of the meninges: an approach combining proteomics and Imaging Mass Cytometry
脑膜的详细分子和结构表征:蛋白质组学和成像质量细胞术相结合的方法
  • 批准号:
    10549824
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
A novel role for higher order auditory circuits: social group dynamics and descending pathways to the Social Behavior Network
高阶听觉回路的新作用:社会群体动态和社会行为网络的下降路径
  • 批准号:
    10671537
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Detailed molecular and structural characterization of the meninges: an approach combining proteomics and Imaging Mass Cytometry
脑膜的详细分子和结构表征:蛋白质组学和成像质量细胞术相结合的方法
  • 批准号:
    10462994
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Higher Order Convolutional Neural Network for Classification of Lewy-body Diseases and Alzheimers Disease
用于路易体病和阿尔茨海默病分类的高阶卷积神经网络
  • 批准号:
    10363781
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了