Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
基本信息
- 批准号:RGPIN-2018-04702
- 负责人:
- 金额:$ 3.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Automated Fault Detection and Diagnosis (FDD) systems depend on the reliability of sensor readings. An inconsistency in a sensor's readings under specific operating conditions may not necessarily be a fault in the sensor itself, but a symptom of a more serious fault in the monitored system, and vice versa. Hence, system and sensor faults might manifest themselves with the same symptoms. The ability to identify the exact source of faults is crucial in the monitoring of a system because different corrective actions are required depending on whether the fault is from a sensor or from the system. There is an abundance of literature on fault detection and diagnosis for both sensors and systems individually. Despite the importance of the practical application of diagnostic schemes, distinguishing between sensor and system faults does not appear to have received substantial attention in the monitoring and diagnosis literature. Most current studies and methodologies of detecting faults make one of the following implicit assumptions: - Sensors are fully functional, so faults are attributable to the system. - The system is fully functional, and faults are attributable to the sensors.Without knowledge of the system characteristics, the discrepancy of sensor readings from the system model may erroneously be interpreted as potential faults in the monitoring sensors. For instance, if limit checking is used to validate the sensor measurement without some knowledge of the system, the diagnosis might wrongly be taken as a sensor fault. Conversely, a simple sensor fault might be diagnosed as a system fault and trigger unnecessary corrective actions. Using multiple redundant sensors is one way of improving the situation, and it can facilitate distinguishing sensor faults from the system faults. However, cost, physical, and practical constraints limit generous placement of redundant sensors. Although cost is not always an issue, the sensor placement should still be judicious and based on scientific principles to avoid complexity. To address this issue, by aiming to identify the minimum degree of sensor redundancy, we have used a priori knowledge of physical relationships between the monitored variables to verify the credibility of the existing sensor observations. Subsequently, we have developed a redundant sensor placement methodology for systems whose variables can be modeled as a serially connected causal network. The generalization of which by deduction has revealed that if the number of sensors (essential and redundant) is greater than 1.5 times the number of monitored variables the task of distinguishing between sensor and system faults can be accomplished with certainty. The proposed research aims to prove the developed method through formal means and extend it for general networks (system block diagrams) with multiple-input and multiple-output without any restriction on the form of interconnections.
自动故障检测和诊断(FDD)系统依赖于传感器读数的可靠性。传感器在特定操作条件下的读数不一致可能不一定是传感器本身的故障,而是被监控系统出现更严重故障的症状,反之亦然。因此,系统和传感器故障可能会出现相同的症状。准确识别故障来源的能力在系统监控中至关重要,因为根据故障是来自传感器还是来自系统,需要采取不同的纠正措施。在传感器和系统各自的故障检测和诊断方面有大量的文献。尽管诊断方案的实际应用很重要,但在监测和诊断文献中,区分传感器和系统故障似乎没有得到实质性的重视。目前大多数检测故障的研究和方法都做出了以下隐含的假设之一:-传感器是完全起作用的,因此故障可归因于系统。-系统功能齐全,故障可归因于传感器。在不了解系统特性的情况下,系统模型中传感器读数的差异可能被错误地解释为监控传感器中的潜在故障。例如,如果在不了解系统的情况下使用极限检查来验证传感器测量,则诊断可能被错误地视为传感器故障。相反,一个简单的传感器故障可能被诊断为系统故障并触发不必要的纠正操作。使用多个冗余传感器是改善这种情况的一种方法,它可以方便地区分传感器故障和系统故障。然而,成本、物理和实用方面的限制限制了冗余传感器的大量放置。虽然成本并不总是一个问题,但传感器的放置仍然应该是明智的,并基于科学的原则,以避免复杂性。为了解决这个问题,通过确定传感器的最小冗余度,我们使用了被监测变量之间物理关系的先验知识来验证现有传感器观测的可信度。随后,我们为变量可被建模为串联因果网络的系统开发了一种冗余传感器布局方法。其推演的推广表明,如果传感器的数目(基本的和冗余的)大于被监测变量的1.5倍,则可以确定地完成区分传感器和系统故障的任务。研究的目的是通过形式化的方法证明所提出的方法,并将其推广到具有多输入多输出的一般网络(系统框图),而不限制互连的形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sassani, Farrokh其他文献
Intelligent Machining Monitoring Using Sound Signal Processed With the Wavelet Method and a Self-Organizing Neural Network
- DOI:
10.1109/lra.2019.2926666 - 发表时间:
2019-10-01 - 期刊:
- 影响因子:5.2
- 作者:
Nasir, Vahid;Cool, Julie;Sassani, Farrokh - 通讯作者:
Sassani, Farrokh
Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations
- DOI:
10.1007/s00542-013-1938-1 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:2.1
- 作者:
Khan, Farid;Sassani, Farrokh;Stoeber, Boris - 通讯作者:
Stoeber, Boris
Copper foil-type vibration-based electromagnetic energy harvester
- DOI:
10.1088/0960-1317/20/12/125006 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:2.3
- 作者:
Khan, Farid;Sassani, Farrokh;Stoeber, Boris - 通讯作者:
Stoeber, Boris
Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending
- DOI:
10.1088/0964-1726/25/11/115044 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:4.1
- 作者:
Farajollahi, Meisam;Sassani, Farrokh;Madden, John D. W. - 通讯作者:
Madden, John D. W.
Acoustic emission monitoring of sawing process: artificial intelligence approach for optimal sensory feature selection
- DOI:
10.1007/s00170-019-03526-3 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:3.4
- 作者:
Nasir, Vahid;Cool, Julie;Sassani, Farrokh - 通讯作者:
Sassani, Farrokh
Sassani, Farrokh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sassani, Farrokh', 18)}}的其他基金
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
- 批准号:
RGPIN-2018-04702 - 财政年份:2021
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
- 批准号:
RGPIN-2018-04702 - 财政年份:2020
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
- 批准号:
RGPIN-2018-04702 - 财政年份:2019
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Distinguishing Sensor Faults from System Faults, and optimal placement of redundant sensors.
区分传感器故障和系统故障,以及冗余传感器的最佳放置。
- 批准号:
RGPIN-2018-04702 - 财政年份:2018
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Designing a biomedical net for heart valve implant
设计用于心脏瓣膜植入的生物医学网络
- 批准号:
530660-2018 - 财政年份:2018
- 资助金额:
$ 3.93万 - 项目类别:
Engage Grants Program
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
- 批准号:
5542-2011 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Vision-based seam tracking and quality assurance for pipe welding
基于视觉的管道焊接焊缝跟踪和质量保证
- 批准号:
504786-2016 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Engage Grants Program
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
- 批准号:
5542-2011 - 财政年份:2014
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
- 批准号:
5542-2011 - 财政年份:2013
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Integrated sensor-system monitoring, fault detection and performance recovery
集成传感器系统监控、故障检测和性能恢复
- 批准号:
5542-2011 - 财政年份:2012
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
人类NADPH sensor蛋白HSCARG调控机制研究
- 批准号:30930020
- 批准年份:2009
- 资助金额:170.0 万元
- 项目类别:重点项目
基于sensor agent的营养液组分动态测量与建模研究
- 批准号:60775014
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Development of the initial prototype of a pill sensor to detect colonic polyps and early bowel cancer
开发用于检测结肠息肉和早期肠癌的药丸传感器的初始原型
- 批准号:
MR/Y503411/1 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Research Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
- 批准号:
2345803 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Continuing Grant
I-Corps: Translation Potential of Head Impact Monitoring with Embedded Sensor Technology in Sports Helmets
I-Corps:运动头盔中嵌入式传感器技术的头部碰撞监测的转化潜力
- 批准号:
2416207 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Standard Grant
Revolutionizing Tactile AI: Developing a Soft, Liquid-Structured, High Density, 3-Axis Tactile Sensor
彻底改变触觉 AI:开发柔软、液体结构、高密度、3 轴触觉传感器
- 批准号:
24K20874 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The role of energy sensor signaling in mitochondrial cardiomyopathy
能量传感器信号在线粒体心肌病中的作用
- 批准号:
10995416 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
ERI: Robust and Scalable Manufacturing of Ultra-Sensitive and Selective Molecule Sensor Arrays
ERI:稳健且可扩展的超灵敏和选择性分子传感器阵列制造
- 批准号:
2301668 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Standard Grant
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
- 批准号:
24K07524 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track L: An Integrated and Miniaturized Opioid Sensor System: Advancing Evidence-Based Strategies for Addressing the Opioid Crisis
NSF 融合加速器轨道 L:集成和小型化阿片类药物传感器系统:推进解决阿片类药物危机的循证策略
- 批准号:
2344344 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Standard Grant














{{item.name}}会员




