Accelerated Multi-Dimensional Flow Encoding by MRI

MRI 加速多维流编码

基本信息

  • 批准号:
    RGPIN-2019-06483
  • 负责人:
  • 金额:
    $ 2.48万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The primary focus of my research program is to develop fast MRI methods to quantify cardiovascular physiology. A cornerstone of this work is phase-contrast (PC) MRI, a powerful non-invasive tool for blood flow measurement. Typically, PC MRI involves prescription of a single slice perpendicular to a target vessel, and flow through the slice is measured. Although convenient for measuring flow in long, straight vessels, this approach does not translate well to complex vascular geometries or the heart. To address this limitation, advanced PC MRI methods have been developed to quantify blood flow in three spatial directions over a 3D volume. These so-called `4D Flow' approaches permit visualization of complex blood flow patterns, and can also be used to quantify hemodynamic parameters such as wall shear stress or pressure gradients. However, 4D Flow has seen limited adoption because scan times are relatively long (>10 minutes), making them prone to artifact from patient motion and irregular respiratory patterns. These challenges are exacerbated in pediatrics because subjects are more likely to move during acquisition, and scan times become even longer (~20 minutes) as finer resolution is necessary to visualize small cardiovascular structures. Fortunately, the convergence of 1) MRI hardware advancements that permit rapid scanning, 2) new techniques for motion compensation and 3) new reconstruction strategies which generate high quality images from "undersampled" data, provide an unprecedented opportunity to dramatically improve the efficiency and robustness of 4D Flow. With the goal of making 4D Flow applicable to pediatric subjects, my program seeks to develop acquisition and reconstruction strategies which synergistically combine rapid scanning, motion compensation, and undersampling techniques while ensuring accurate flow measurement. A long-term goal of my research program is to improve our understanding of pediatric cardiovascular physiology. To support this program, funding is requested for trainees to pursue the following Aims: 1.Bulk Motion Detection & Compensation: Pioneer a strategy to detect and compensate for the random motion of restless subjects. 2.Wireless Physiological Motion Detection: Optimize a "wireless" technique for monitoring cardiac and respiratory motion throughout the 4D flow acquisition, eliminating the need for cumbersome monitoring equipment. 3.Accelerated Acquisition & Reconstruction: Create a data acquisition and reconstruction pipeline for accurate flow measurement with highly undersampled 4D Flow data. Fulfillment of these objectives will result in a robust and efficient 4D Flow acquisition and reconstruction scheme with high spatial resolution, a scan time under 10 minutes, and no need for external physiological monitoring devices. This innovative program promises to advance research in developmental cardiovascular physiology while providing trainees with in-demand skills for careers in academia or industry.
我研究项目的主要重点是开发快速MRI方法来量化心血管生理学。这项工作的基石是相对比(PC) MRI,一种强大的非侵入性血流测量工具。典型的,PC MRI包括一个垂直于目标血管的单片处方,并测量通过该片的流量。虽然这种方法可以方便地测量长而直的血管中的流量,但它不能很好地转化为复杂的血管几何形状或心脏。为了解决这一限制,已经开发出先进的PC MRI方法来量化三维体积上三个空间方向的血流。这些所谓的“4D流动”方法允许可视化复杂的血液流动模式,也可用于量化血液动力学参数,如壁剪切应力或压力梯度。然而,4D Flow的应用有限,因为扫描时间相对较长(10分钟左右),容易受到患者运动和不规则呼吸模式的干扰。这些挑战在儿科中更加严重,因为受试者在获取过程中更有可能移动,并且扫描时间变得更长(~20分钟),因为需要更精细的分辨率来观察小的心血管结构。幸运的是,1)允许快速扫描的MRI硬件进步,2)运动补偿的新技术和3)从“欠采样”数据生成高质量图像的新重建策略的融合,为显着提高4D Flow的效率和鲁棒性提供了前所未有的机会。为了使4D Flow适用于儿科受试者,我的计划旨在开发采集和重建策略,将快速扫描,运动补偿和欠采样技术协同结合,同时确保准确的流量测量。我的研究计划的长期目标是提高我们对儿童心血管生理学的理解。为支持该计划,要求为学员提供资金,以实现以下目标:大块运动检测和补偿:开拓了一种检测和补偿不安分受试者随机运动的策略。2.无线生理运动检测:优化“无线”技术,在整个4D血流采集过程中监测心脏和呼吸运动,消除了对笨重的监测设备的需要。3.加速采集和重建:创建数据采集和重建管道,使用高度欠采样的4D流量数据进行精确的流量测量。实现这些目标将产生一个强大而高效的4D流量采集和重建方案,具有高空间分辨率,扫描时间低于10分钟,不需要外部生理监测设备。这一创新项目承诺推进心血管发育生理学的研究,同时为学员提供学术界或工业界职业所需的技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Macgowan, Christopher其他文献

Macgowan, Christopher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Macgowan, Christopher', 18)}}的其他基金

Accelerated Multi-Dimensional Flow Encoding by MRI
MRI 加速多维流编码
  • 批准号:
    RGPIN-2019-06483
  • 财政年份:
    2021
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerated Multi-Dimensional Flow Encoding by MRI
MRI 加速多维流编码
  • 批准号:
    RGPIN-2019-06483
  • 财政年份:
    2020
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual
Accelerated Multi-Dimensional Flow Encoding by MRI
MRI 加速多维流编码
  • 批准号:
    RGPIN-2019-06483
  • 财政年份:
    2019
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
  • 批准号:
    EP/Y022092/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Grant
CAREER: Multi-Dimensional Photonic Accelerators for Scalable and Efficient Computing
职业:用于可扩展和高效计算的多维光子加速器
  • 批准号:
    2337674
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
AF: Small: Equilibrium Computation and Multi-Agent Learning in High-Dimensional Games
AF:小:高维游戏中的平衡计算和多智能体学习
  • 批准号:
    2342642
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Automated multi-dimensional mapping of dynamic laser-liquid interactions
动态激光-液体相互作用的自动多维映射
  • 批准号:
    EP/Y001737/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Research Grant
A multi-dimensional evaluation of therapeutic intervention-induced functional recovery for unilateral spatial neglect model animal
单侧空间忽视模型动物治疗干预诱导功能恢复的多维评价
  • 批准号:
    23K10445
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unified Robust Control System Design for Regional Multi-Energy Systems Based on Multi-Dimensional Systems and Dissipativity
基于多维系统和耗散性的区域多能源系统统一鲁棒控制系统设计
  • 批准号:
    23K03910
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
  • 批准号:
    2337902
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324490
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
  • 批准号:
    2324489
  • 财政年份:
    2023
  • 资助金额:
    $ 2.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了