Intelligent Detection of Open Source Software Anomalies

开源软件异常智能检测

基本信息

  • 批准号:
    RGPIN-2019-05175
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Software that is not fully tested, can show unexpected results during execution that is referred as Software Anomaly (SA). Specific SA is known as Implied Scenario (IS): a new scenario is implied during execution time. A popular example of IS is a boiler system in which the control component sends commands to an actuator based on the previous collected data from sensors instead of the current data. The earlier fixing of IS reduces the costs. Hence, IS research rely on studying IS from Sequence Diagrams (SD). Most research require human expertise (e.g. to annotate SD), which is error-prone and time consuming. These approaches cannot help developers to avoid IS while developing a software. Also, in practice, SD is not used or documented by companies. On the other hand, there is much research that build SA prediction algorithms (using anomaly reports data with metrics such as lines of code added) to determine parts of software that are more probable to have SA. However, these works do not directly address IS. Objective. The short-term objective of this research program is to develop heuristic-based techniques and tools for IS prediction using the SA prediction metrics, which will help software developers to automatically analyze the code for IS and visualize the results while developing software. Open Source Software (OSS) is the main focus of this research due to the increasing number of companies that are adopting OSS solutions, while there is a need to support companies in managing and integrating the OSS. Methods. In the first stream of the program we will investigate the SA prediction metrics that can be used for IS and develop an IS prediction metrics database. We will conduct systematic literature review and explore public SA report datasets to develop an IS library. We will also study SA prediction research and use topic modelling to develop an IS Prediction Metrics Database for the IS library. Secondly, we will build IS prediction models based on heuristic approaches. We will explore different algorithms and metrics to increase IS prediction accuracy. Also, we will study automation of machine learning approaches to develop models that choose prediction metrics automatically. Finally, we will study visualization techniques and OSS design patterns to build open source tools for analyzing code for IS. We will evaluate our models with various datasets using our prototypes and compare results with the current IS prediction works. The usefulness of the tool will be surveyed online for developers worldwide. HQP and Impact. I expect practical and theoretical contributions in IS prediction research that will benefit Canadian software industry in producing high quality software (i.e. avoiding IS) and companies in integrating OSS solutions. The program will train Highly Qualified Personnel (HQP) with expertise in data science and software engineering. The HQP will publish in top-ranked peer-reviewed venues as the first author.
未经过充分测试的软件在执行过程中可能会出现意外结果,称为软件异常(SA)。特定的SA称为隐含方案(IS):在执行时隐含一个新的方案。信息系统的一个常见例子是锅炉系统,其中控制部件基于先前从传感器收集的数据而不是当前数据向执行器发送命令。更早的IS修复降低了成本。因此,研究依赖于学习是来自序列图(SD)。大多数研究需要人类的专业知识(例如,对SD进行注释),这容易出错且耗时。这些方法不能帮助开发人员在开发软件时避免IS。此外,在实践中,公司也没有使用或记录SD。另一方面,有很多研究构建SA预测算法(使用异常报告数据和添加的代码行等度量)来确定更有可能具有SA的软件部分。然而,这些作品并没有直接涉及到的是。目标。这项研究计划的短期目标是开发基于启发式的技术和工具,用于使用SA预测指标进行IS预测,这将帮助软件开发人员在开发软件时自动分析IS的代码并将结果可视化。开放源码软件(OSS)是本研究的主要焦点,因为越来越多的公司正在采用OSS解决方案,同时需要支持公司管理和集成OSS。方法。在该计划的第一个流程中,我们将调查可用于IS的SA预测指标,并开发一个IS预测指标数据库。我们将进行系统的文献回顾,并探索公共SA报告数据集,以开发IS库。我们还将研究SA预测研究,并使用主题建模为IS库开发IS预测度量数据库。其次,我们将基于启发式方法构建IS预测模型。我们将探索不同的算法和度量来提高IS预测的准确性。此外,我们还将研究机器学习方法的自动化,以开发自动选择预测指标的模型。最后,我们将研究可视化技术和OSS设计模式,以构建用于分析IS代码的开源工具。我们将使用我们的原型在不同的数据集上评估我们的模型,并将结果与当前的IS预测工作进行比较。世界各地的开发人员将在线调查该工具的有用性。HQP和Impact。我期待在IS预测研究方面的实践和理论贡献,这将有助于加拿大软件行业生产高质量的软件(即避免IS)和公司集成OSS解决方案。该计划将培养具有数据科学和软件工程专业知识的高素质人才(HQP)。HQP将以第一作者的身份在排名靠前的同行评议场所发表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HendijaniFard, Fatemeh其他文献

HendijaniFard, Fatemeh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HendijaniFard, Fatemeh', 18)}}的其他基金

Intelligent Detection of Open Source Software Anomalies
开源软件异常智能检测
  • 批准号:
    RGPIN-2019-05175
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Detection of Open Source Software Anomalies
开源软件异常智能检测
  • 批准号:
    RGPIN-2019-05175
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Detection of Open Source Software Anomalies
开源软件异常智能检测
  • 批准号:
    DGECR-2019-00178
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
Intelligent Detection of Open Source Software Anomalies
开源软件异常智能检测
  • 批准号:
    RGPIN-2019-05175
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Graphon mean field games with partial observation and application to failure detection in distributed systems
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Unifying Object Detection and Image Captioning using Vision-Language Knowledge Base for Open-World Comprehension
使用视觉语言知识库统一对象检测和图像描述以实现开放世界理解
  • 批准号:
    24K20830
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Situated Anomaly Detection in an Open Environment
在开放环境中进行异常检测
  • 批准号:
    FT230100121
  • 财政年份:
    2024
  • 资助金额:
    $ 1.68万
  • 项目类别:
    ARC Future Fellowships
M-ISIC: A Multimodal Open-Source International Skin Imaging Collaboration Informatics Platform for Automated Skin Cancer Detection
M-ISIC:用于自动皮肤癌检测的多模式开源国际皮肤成像协作信息学平台
  • 批准号:
    10528944
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
M-ISIC: A Multimodal Open-Source International Skin Imaging Collaboration Informatics Platform for Automated Skin Cancer Detection
M-ISIC:用于自动皮肤癌检测的多模式开源国际皮肤成像协作信息学平台
  • 批准号:
    10689201
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
  • 批准号:
    10415579
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
muMS2: an open source R package for analyzing and integrating multi-omics datasets to improve early detection and understanding of colorectal cancer
muMS2:一个开源 R 包,用于分析和集成多组学数据集,以改善结直肠癌的早期检测和理解
  • 批准号:
    10625394
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Ambient Level Hydroxyl Radical (OH) Detection Using Broadband Cavity Enhanced Absorption Spectroscopy (BBCEAS) in an Open-Path Configuration
在开放路径配置中使用宽带腔增强吸收光谱 (BBCEAS) 进行环境水平羟基自由基 (OH) 检测
  • 批准号:
    2114655
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Continuing Grant
Intelligent Detection of Open Source Software Anomalies
开源软件异常智能检测
  • 批准号:
    RGPIN-2019-05175
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a positron annihilation apparatus with sub-mm space resolution for the detection of nm-size open volume
开发具有亚毫米空间分辨率的正电子湮没装置,用于检测纳米尺寸开放体积
  • 批准号:
    21K18812
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Automated software vulnerability detection by leveraging open source knowledge
利用开源知识自动检测软件漏洞
  • 批准号:
    564717-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了