Phenomenological models of large complex populations of cells: from microbes to tissues
大型复杂细胞群的现象学模型:从微生物到组织
基本信息
- 批准号:RGPIN-2021-03731
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this proposal, I will extend my work on modeling population dynamics of cells in rapidly evolving microbial populations and differentiating/regenerating tissues to develop new strategies aiming at uncovering "statistical" rules governing collective phenomena in large populations of cells. I will use adaptive immunity in bacteria and cellular reprogramming as primary systems of interest, but the methods developed will be more generally applicable. In the context of microbial populations, I will model collective dynamics of adaptive immunity in bacterial cells that may individually not be efficient in avoiding viruses but collectively the population does better than its parts. This work will build upon my previous work on collective features of adaptive immunity (PNAS 2018) and the physiological constraints that limit individual cell's ability to avoid viruses (PNAS 2020), with a broader focus on how viruses affect microbial diversity and their fate. This project will be grounded by present experimental collaborations with Devaki Bhaya at Stanford University. In the context of tissues, I will focus on cellular reprogramming, which is a phenomenon where mature, specialized cells can be reprogrammed to an immature state capable of developing into all tissues of the body. Here I will track and analyze changes in gene expression in individual cells as they reprogram to identify key genetic regulators of the reprogramming process. This work stems from the large variability we recently discovered (Science 2019) in reprogramming ability amongst genetically identical cells. We demonstrated that a small fraction of "elite" cells contributes thousand-fold or more to the immature cell population than do most non-elite cells. This work will focus on the "path statistics" of elite versus non-elite cells as they traverse the high dimensional gene-expression space from a mature to an immature state. The single cell transcriptomics data for this project is being generated with Jeff Wrana's group at the Lunenfeld-Tanenbaum Research Institute in Toronto. My long-term ambition is to uncover the statistical rules that govern the structure-function relationship in large population of cells. Here, I will focus on extending my work on developing phenomenological models for large "strongly interacting" heterogeneous population of cells that effectively behave as a collective. Overall, my work will provide a deeper understanding of design principles that allow large collection of cells to perform specific functions from tissues in multicellular organisms, to understanding how complex microbial communities respond and adapt to environmental changes.
在这项提案中,我将扩展我在快速进化的微生物种群中对细胞群体动力学进行建模以及组织分化/再生方面的工作,以开发新的战略,旨在揭示管理大量细胞群体集体现象的“统计学”规则。我将使用细菌的适应性免疫和细胞重新编程作为主要的感兴趣的系统,但所开发的方法将更普遍地适用。在微生物群体的背景下,我将对细菌细胞中适应性免疫的集体动态进行建模,这些群体在单独避免病毒方面可能不是有效的,但总体上来说,群体比其部分表现得更好。这项工作将建立在我之前关于适应性免疫的集体特征的工作(PNAS 2018)和限制单个细胞避免病毒能力的生理限制(PNAS 2020)的基础上,更广泛地关注病毒如何影响微生物多样性及其命运。该项目将以目前与斯坦福大学Devaki Bhaya的实验合作为基础。在组织的背景下,我将重点介绍细胞重新编程,这是一种成熟的、专门的细胞可以重新编程到不成熟状态的现象,能够发育成身体的所有组织。在这里,我将跟踪和分析单个细胞在重新编程时基因表达的变化,以确定重新编程过程的关键遗传调节因素。这项工作源于我们最近在遗传相同的细胞之间重新编程能力方面发现的巨大差异(《科学2019》)。我们证明,与大多数非精英细胞相比,一小部分“精英”细胞对未成熟细胞群体的贡献是数千倍或更多。这项工作将集中在精英细胞与非精英细胞在高维基因表达空间中从成熟状态到未成熟状态的“路径统计”上。该项目的单细胞转录组数据是由多伦多伦恩菲尔德-塔南鲍姆研究所的Jeff Wrana团队生成的。我的长期抱负是揭示管理大量细胞群体结构-功能关系的统计规则。在这里,我将专注于扩展我的工作,为有效地作为一个集体行为的大型“强相互作用”的异质细胞群体开发现象学模型。总体而言,我的工作将提供对设计原则的更深层次的理解,这些设计原则允许大量细胞收集来执行多细胞生物体中组织的特定功能,并理解复杂的微生物群落如何响应和适应环境变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Goyal, Sidhartha其他文献
How adaptive immunity constrains the composition and fate of large bacterial populations
- DOI:
10.1073/pnas.1802887115 - 发表时间:
2018-08-07 - 期刊:
- 影响因子:11.1
- 作者:
Bonsma-Fisher, Madeleine;Soutiere, Dominique;Goyal, Sidhartha - 通讯作者:
Goyal, Sidhartha
Contingency and selection in mitochondrial genome dynamics.
线粒体基因组动力学中的偶性和选择。
- DOI:
10.7554/elife.76557 - 发表时间:
2022-04-11 - 期刊:
- 影响因子:7.7
- 作者:
Nunn, Christopher J.;Goyal, Sidhartha - 通讯作者:
Goyal, Sidhartha
Dynamic Mutation-Selection Balance as an Evolutionary Attractor
- DOI:
10.1534/genetics.112.141291 - 发表时间:
2012-08-01 - 期刊:
- 影响因子:3.3
- 作者:
Goyal, Sidhartha;Balick, Daniel J.;Desai, Michael M. - 通讯作者:
Desai, Michael M.
Single-Cell RNA Sequencing: A New Window into Cell Scale Dynamics
- DOI:
10.1016/j.bpj.2018.07.003 - 发表时间:
2018-08-07 - 期刊:
- 影响因子:3.4
- 作者:
Dasgupta, Sabyasachi;Bader, Gary D.;Goyal, Sidhartha - 通讯作者:
Goyal, Sidhartha
A quantitative comparison of sRNA-based and protein-based gene regulation.
- DOI:
10.1038/msb.2008.58 - 发表时间:
2008 - 期刊:
- 影响因子:9.9
- 作者:
Mehta, Pankaj;Goyal, Sidhartha;Wingreen, Ned S. - 通讯作者:
Wingreen, Ned S.
Goyal, Sidhartha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Goyal, Sidhartha', 18)}}的其他基金
Phenomenological models of large complex populations of cells: from microbes to tissues
大型复杂细胞群的现象学模型:从微生物到组织
- 批准号:
RGPIN-2021-03731 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Understanding the population structure and fate of large rapidly evolving populations
了解人口结构和大量快速进化人口的命运
- 批准号:
RGPIN-2015-05241 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Understanding the population structure and fate of large rapidly evolving populations
了解人口结构和大量快速进化人口的命运
- 批准号:
RGPIN-2015-05241 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Understanding the population structure and fate of large rapidly evolving populations
了解人口结构和大量快速进化人口的命运
- 批准号:
RGPIN-2015-05241 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Understanding the population structure and fate of large rapidly evolving populations
了解人口结构和大量快速进化人口的命运
- 批准号:
RGPIN-2015-05241 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Understanding the population structure and fate of large rapidly evolving populations
了解人口结构和大量快速进化人口的命运
- 批准号:
RGPIN-2015-05241 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-agent Self-improving of Large Language Models (LLMs)
大型语言模型 (LLM) 的多智能体自我改进
- 批准号:
2903811 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Studentship
Integrating Large Language Models for Long Horizon Task Planning in Multi-robot Scenarios
集成大型语言模型以实现多机器人场景中的长期任务规划
- 批准号:
24K07399 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
- 批准号:
BB/Y514032/1 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Research Grant
CAREER: Theoretical foundations for deep learning and large-scale AI models
职业:深度学习和大规模人工智能模型的理论基础
- 批准号:
2339904 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
CAREER: Regularizing Large Language Models for Safe and Reliable Program Generation
职业:规范大型语言模型以安全可靠地生成程序
- 批准号:
2340408 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Sediment connectivity in large landslides based on quality-maximized digital elevation models derived from historical aerial photography and UAV imagery
基于源自历史航空摄影和无人机图像的质量最大化数字高程模型的大型滑坡中的沉积物连通性
- 批准号:
24K04397 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)