Imaging attractor dynamics in the neural compass

神经罗盘中吸引子动力学的成像

基本信息

  • 批准号:
    RGPIN-2017-04539
  • 负责人:
  • 金额:
    $ 4.81万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Individual neurons work on short timescales; from an action potential duration of 1 ms to synaptic currents that persist for just 10 ms or 100 ms of milliseconds. Yet, neurons embedded within a network are capable of maintaining persistent activity in the absence of external stimuli. One prominent computational theory uses 'attractor dynamics', whereby the connectivity of the network stabilizes activity without additional input to the network. In general, this is implemented in network that consists of recurrent excitatory connections between neurons that code for similar features along with feedforward inhibitory connectivity to silence the activity of neurons coding for non-similar features. This creates a competitive network that will sustain its current activity without any additional input, and will not change until a new input is strong enough to change the attractor state'. Importantly, this framework can encode discrete and continuous analog' variables. Here we propose to look for evidence of attractor dynamics in the head direction (HD) cell network.? The HD system has almost exclusively been modeled using a continuous ring attractor network. Briefly, activity representing the current HD is maintained by traditional attractor connectivity, while activity is gradually moved along this continuous ring attractor by vestibular inputs that relay head movements of the animal. We will use optical imaging in the anterior thalamic nucleus (ATN), which contains abundant HD cells, in an attempt to visualize this activity in freely behaving mice. We will use and further develop miniaturized microscopes that will allow us to record from hundreds of HD cells simultaneously. This approach is a major improvement over traditional electrode recordings, with which researchers have only recorded from up to 10 HD cells at a time. We will investigate whether attractor-like dynamics exist within the head direction network. We will develop the hardware and software for a closed-loop system to perform optogenetic perturbations based on slight head movements, perform optical imaging of HD cells in a variety of behaviors to look for ring attractors and coherent drift in the network, and finally will perform optogenetic silencing of the HD generation circuitry to determine to induce and analyze larger shifts in the HD network and compare this larger drift to behavior in a path integration task. These experiments will provide the first optical recordings of large populations of HD cells and will provide insight into the network dynamics of the HD network.
单个神经元在短时间尺度上工作;从1毫秒的动作电位持续时间到仅持续10毫秒或100毫秒的突触电流。然而,嵌入网络中的神经元能够在没有外部刺激的情况下保持持续的活动。一个著名的计算理论使用“吸引子动力学”,即网络的连通性在没有额外输入的情况下稳定活动。一般来说,这是在网络中实现的,该网络由编码相似特征的神经元之间的经常性兴奋性连接沿着前馈抑制性连接组成,以使编码非相似特征的神经元的活动沉默。这创造了一个竞争网络,它将在没有任何额外输入的情况下维持其当前的活动,并且不会改变,直到新的输入足够强以改变吸引子状态。重要的是,这个框架可以编码离散和连续的模拟变量。在这里,我们建议寻找证据的吸引动力学的头部方向(HD)的细胞网络。HD系统几乎完全使用连续环吸引子网络建模。简而言之,代表当前HD的活动由传统吸引子连接性维持,而活动通过传递动物头部运动的前庭输入而沿该连续环吸引子沿着逐渐移动。我们将在含有丰富HD细胞的丘脑前核(ATN)中使用光学成像,试图在自由行为的小鼠中观察这种活动。我们将使用并进一步开发微型显微镜,使我们能够同时记录数百个HD细胞。这种方法是对传统电极记录的重大改进,研究人员一次只能记录多达10个HD细胞。我们将研究吸引子样动力学是否存在于头部方向网络。我们将开发闭环系统的硬件和软件,以基于轻微的头部运动执行光遗传学扰动,以各种行为执行HD细胞的光学成像,以寻找网络中的环吸引子和相干漂移,并且最后将执行HD生成电路的光遗传学沉默以确定诱导和分析HD网络中的较大漂移,并且将该较大漂移与HD网络中的行为进行比较。路径整合任务。这些实验将提供大量HD细胞的第一次光学记录,并将提供对HD网络动态的洞察。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brandon, Mark其他文献

Mid-latitude glacial erosion hotspot related to equatorial shifts in southern Westerlies
  • DOI:
    10.1130/g37008.1
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Herman, Frederic;Brandon, Mark
  • 通讯作者:
    Brandon, Mark

Brandon, Mark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brandon, Mark', 18)}}的其他基金

Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2020
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2018
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2017
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

含有wild attractor区间映射存在性和随机稳定性的研究
  • 批准号:
    11501001
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2021
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
CRCNS: Circuit dynamics in zebrafish larvae: mechanisms, modulation, and mathematical modeling of network topology and attractor dynamics
CRCNS:斑马鱼幼虫的电路动力学:网络拓扑和吸引子动力学的机制、调制和数学建模
  • 批准号:
    10687049
  • 财政年份:
    2020
  • 资助金额:
    $ 4.81万
  • 项目类别:
CRCNS: Circuit dynamics in zebrafish larvae: mechanisms, modulation, and mathematical modeling of network topology and attractor dynamics
CRCNS:斑马鱼幼虫的电路动力学:网络拓扑和吸引子动力学的机制、调制和数学建模
  • 批准号:
    10266158
  • 财政年份:
    2020
  • 资助金额:
    $ 4.81万
  • 项目类别:
CRCNS: Circuit dynamics in zebrafish larvae: mechanisms, modulation, and mathematical modeling of network topology and attractor dynamics
CRCNS:斑马鱼幼虫的电路动力学:网络拓扑和吸引子动力学的机制、调制和数学建模
  • 批准号:
    10474556
  • 财政年份:
    2020
  • 资助金额:
    $ 4.81万
  • 项目类别:
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2020
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2019
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2018
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging attractor dynamics in the neural compass
神经罗盘中吸引子动力学的成像
  • 批准号:
    RGPIN-2017-04539
  • 财政年份:
    2017
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Discovery Grants Program - Individual
Manipulating hippocampal CA3 attractor dynamics with targeted 2 photon ("P) activation in vivo)
通过体内目标 2 光子 (“P” 激活) 操纵海马 CA3 吸引子动力学
  • 批准号:
    1765000
  • 财政年份:
    2016
  • 资助金额:
    $ 4.81万
  • 项目类别:
    Studentship
Attractor dynamics in local neuronal networks
局部神经网络中的吸引子动力学
  • 批准号:
    466582-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 4.81万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了