Representations of Galois and Tame Extensions
伽罗瓦和驯服扩张的表示
基本信息
- 批准号:7902106
- 负责人:
- 金额:$ 2.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1979
- 资助国家:美国
- 起止时间:1979-06-01 至 1981-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lindsay Childs其他文献
Two-Step Sintering Effects on the Microstructure and Mechanical Properties of Forsterite Scaffolds
两步烧结对镁橄榄石支架微观结构和力学性能的影响
- DOI:
10.1007/978-3-319-51493-2_33 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
F. Tavangarian;Lindsay Childs;Guoqiang Li;D. Wooten;Bryant Cornwell - 通讯作者:
Bryant Cornwell
Lindsay Childs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lindsay Childs', 18)}}的其他基金
Mathematical Sciences: Hopf Algebras and Galois Module Theory
数学科学:Hopf代数和伽罗瓦模理论
- 批准号:
9001722 - 财政年份:1990
- 资助金额:
$ 2.14万 - 项目类别:
Continuing Grant
Azumaya Algebras and Galois Extensions
Azumaya 代数和伽罗瓦扩展
- 批准号:
7603946 - 财政年份:1976
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant
Azumaya Algebra and Galois Extensions
Azumaya 代数和伽罗瓦扩展
- 批准号:
7504129 - 财政年份:1975
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant
相似国自然基金
Hopf-Galois代数及其附加结构的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线性码的广义pair重量、Galois对偶及相关问题研究
- 批准号:12271199
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
用代数方法研究Galois自对偶码的构造和表示问题
- 批准号:
- 批准年份:2020
- 资助金额:52 万元
- 项目类别:面上项目
Theta对应与Galois周期
- 批准号:11971223
- 批准年份:2019
- 资助金额:52.0 万元
- 项目类别:面上项目
乘子余群胚理论和代数量子群胚的双Galois理论及交叉Yetter-Drinfeld-模范畴
- 批准号:11871144
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
非线性动力系统的Galois方法
- 批准号:11771177
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
差分Galois理论中的算法及其应用
- 批准号:11771433
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
模形式Galois表示的计算及其应用
- 批准号:11601153
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Monoidal Hom-Hopf Galois扩张下的自同态Hom-代数的结构和扩张研究
- 批准号:11601203
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
代数方程之Galois理论的若干历史问题研究
- 批准号:11571276
- 批准年份:2015
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 2.14万 - 项目类别:
Continuing Grant
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
- 批准号:
2348891 - 财政年份:2024
- 资助金额:
$ 2.14万 - 项目类别:
Continuing Grant
Galois表現の保型性を軸とする大域Langlands対応の発展
以伽罗瓦表示的自同构为中心的全局朗兰兹支持的发展
- 批准号:
24KJ0812 - 财政年份:2024
- 资助金额:
$ 2.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
- 批准号:
2889914 - 财政年份:2023
- 资助金额:
$ 2.14万 - 项目类别:
Studentship
Moduli spaces of Galois representations
伽罗瓦表示的模空间
- 批准号:
2302619 - 财政年份:2023
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
- 批准号:
2302284 - 财政年份:2023
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant
志村多様体論的手法によるGalois表現の変形理論の研究
利用志村流形理论方法研究伽罗瓦表示变换理论
- 批准号:
22KJ0041 - 财政年份:2023
- 资助金额:
$ 2.14万 - 项目类别:
Grant-in-Aid for JSPS Fellows
LEAPS-MPS: Number Fields Generated by Points of Curves and their Galois Groups
LEAPS-MPS:由曲线点及其伽罗瓦群生成的数域
- 批准号:
2316946 - 财政年份:2023
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2302394 - 财政年份:2023
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
- 批准号:
2302623 - 财政年份:2023
- 资助金额:
$ 2.14万 - 项目类别:
Standard Grant