Mathematical Sciences: Solvable Lattice Models in Statistical Mechanics
数学科学:统计力学中的可解晶格模型
基本信息
- 批准号:8700867
- 负责人:
- 金额:$ 7.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-07-01 至 1990-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program will explore the connections between exactly solvable lattice models in lattice statistical mechanics and the representation theory of Kac-Moody Lie algebras. The long term goal is to connect the present understanding of exactly solvable models with that of the representation theory of certain Kac-Moody Lie algebra. The immediate task will be the study of specific solvable models and their relations to loop groups. Successful accomplishment of the immediate research project will enhance the methodology for solvable models in the statistical mechanics aspects of physics. This in turn will lead to a better understanding, utilization and control of materials and matters in technical applications as well as in our daily life.
本研究项目将探讨 格点统计中的精确可解格点模型 力学与Kac-Moody Lie的表示理论 代数 长期目标是连接现在 理解精确可解模型与 一类Kac-Moody李代数的表示理论 的 当前的任务是研究具体的可解模型 以及它们与循环群的关系。 成功完成即时研究 该项目将加强可解决模型的方法, 物理学的统计力学方面。 这反过来将 从而更好地了解、利用和控制 技术应用中的材料和问题,以及 我们的日常生活
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Tracy其他文献
Craig Tracy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Tracy', 18)}}的其他基金
Integrable Structure of Interacting Particle Systems
相互作用粒子系统的可积结构
- 批准号:
1809311 - 财政年份:2018
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Integrable Structure of Interacting Particles Systems and Quantum Spin Chains
相互作用粒子系统和量子自旋链的可积结构
- 批准号:
1207995 - 财政年份:2012
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Integrable Systems, Operator Determinants, and Probabilistic Models
可积系统、算子决定因素和概率模型
- 批准号:
0906387 - 财政年份:2009
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Random Matrices, Integrable Systems and Related Stochastic Processes
随机矩阵、可积系统和相关随机过程
- 批准号:
0553379 - 财政年份:2006
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
- 批准号:
0304414 - 财政年份:2003
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Research in Random Matrices and Integrable Systems
随机矩阵和可积系统研究
- 批准号:
9802122 - 财政年份:1998
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Mathematical Sciences: Integrable Models in Mathematics and Physics
数学科学:数学和物理中的可积模型
- 批准号:
9303413 - 财政年份:1993
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Japan Long Term Visit: "Tau-Functions for Dirac Operators"
日本长期访问:“狄拉克算子的 Tau 函数”
- 批准号:
9106953 - 财政年份:1991
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Mathematical Sciences: Integrable Models in Mathematics and Physics
数学科学:数学和物理中的可积模型
- 批准号:
9001794 - 财政年份:1990
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Mathematical Sciences: Integrable Models in Statistical Mechanics
数学科学:统计力学中的可积模型
- 批准号:
8421141 - 财政年份:1985
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 7.81万 - 项目类别:
Continuing Grant