Concepts and Meanings of Formal Domain

形式域的概念和含义

基本信息

  • 批准号:
    8711342
  • 负责人:
  • 金额:
    $ 15.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1987
  • 资助国家:
    美国
  • 起止时间:
    1987-09-01 至 1991-02-28
  • 项目状态:
    已结题

项目摘要

This project will develop a scientific analysis of the knowledge and processes involved in understanding algebra at the high- school level. The research will use three main approaches: One approach is analysis of conceptual growth, a method that has been used productively in the study of cognitive development. The second approach uses tasks taken from the mathematics curriculum and related tasks designed to show what students are able to do and what knowledge they have that enables them to do it. The third approach uses methods of artificial intelligence to construct models of students' knowledge and cognitive processes. The research will focus on students' understanding of the concepts of variables and functions and how this understanding relates to their knowledge of the symbolic expressions of algebra. The research on conceptual growth will study students' ability to reason about two physical systems involving functional relations, a winch in which the final position of a block depends on several factors, and a transfer of liquid from one cylinder to another, where the final height of liquid depends on several other factors. Previous research has shown that students have significant understanding of functions in these systems before they study algebra, and this research will document the increases in students' understanding as they study relevant formal mathematics. The research on understanding symbolic representations will study students' understanding of the meanings of formulas and graphs and their relations. Tasks used in these studies will include problems that are included in the curriculum, as well as more open-ended tasks designed to tap specific aspects of students' understanding. The research on computer modelling will use the results of the empirical studies to develop definite hypotheses about specific knowledge that students acquire in order to perform tasks in the curriculum and other reasoning tasks when they understand the concepts, and about the ways in which that understanding changes and grows. Increased scientific knowledge about the understanding of concepts in algebra will contribute to our understanding of the domains of conceptual growth and the analysis of understanding the meanings of symbols. Previous research on conceptual growth has studied informal domains of knowledge, such as taxonomic categories and biological processes. This research will extend those analyses by studying algebra, a domain with a formal structure. Most previous studies of symbolic understanding have focused on ordinary language, and the study of understanding the formal system of algebra will provide new insights into ways that meanings of symbolic representations are understood. Results will also be useful in the improvement of school instruction in algebra and for other training in which mathematical understanding is important.
本计画将发展一套科学分析高中代数知识与过程的方法。该研究将使用三种主要方法:一种方法是对概念增长的分析,这种方法在认知发展的研究中已经得到了有效的应用。第二种方法使用数学课程中的任务和相关任务来展示学生能够做什么以及他们拥有哪些知识使他们能够做到这一点。第三种方法是利用人工智能方法构建学生的知识和认知过程模型。研究将集中在学生对变量和函数概念的理解,以及这种理解如何与他们对代数符号表达的知识联系起来。概念成长的研究将学习学生对两个涉及函数关系的物理系统的推理能力,一个是绞车,其中一个块的最终位置取决于几个因素,另一个是液体从一个圆柱体转移到另一个圆柱体,其中液体的最终高度取决于几个其他因素。先前的研究表明,学生在学习代数之前对这些系统中的函数有了重要的理解,而这项研究将记录学生在学习相关形式数学时对这些系统的理解的增加。理解符号表征的研究将研究学生对公式和图形的意义及其关系的理解。这些研究中使用的任务将包括课程中包含的问题,以及旨在挖掘学生特定理解方面的更多开放式任务。计算机建模的研究将利用实证研究的结果,对学生在理解概念时为了执行课程任务和其他推理任务而获得的特定知识提出明确的假设。以及这种理解是如何变化和发展的。对代数概念理解的科学知识的增加将有助于我们对概念增长领域的理解和对理解符号意义的分析。以往关于概念成长的研究主要集中在非正式的知识领域,如分类范畴和生物过程。本研究将通过研究代数(一个具有形式结构的领域)来扩展这些分析。以往对符号理解的研究大多集中在日常语言上,而对代数形式系统的理解研究将为理解符号表示的意义提供新的见解。结果也将有助于提高学校代数教学和其他训练,其中数学理解是重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Schoenfeld其他文献

Alan Schoenfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Schoenfeld', 18)}}的其他基金

Collaborative Research: TRUmath and Lesson Study: Supporting fundamental and sustainable improvement in high school mathematics teaching
合作研究:TRUmath 和课程研究:支持高中数学教学的根本性和可持续改进
  • 批准号:
    1503454
  • 财政年份:
    2015
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cognitive Processes - Classroom Practices that Lead to Student Proficiency with Word Problems in Algebra
协作研究:认知过程 - 提高学生熟练掌握代数单词问题的课堂实践
  • 批准号:
    0909815
  • 财政年份:
    2009
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Continuing Grant
Balanced Assessment for the Mathematics Curriculum
数学课程的平衡评估
  • 批准号:
    9252902
  • 财政年份:
    1992
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Continuing Grant
Understanding and Teaching the Mathematical Concepts of Functions and Their Graphs
理解和教授函数及其图形的数学概念
  • 批准号:
    8955387
  • 财政年份:
    1990
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
The Nature of Mathematical Thinking and Problem Solving
数学思维和解决问题的本质
  • 批准号:
    8751520
  • 财政年份:
    1987
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Expert and Novice Mathematical Problem Solving
专家和新手数学问题解决
  • 批准号:
    7919049
  • 财政年份:
    1979
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant

相似海外基金

Heian Jingu and Jidai Matsuri: Changing Meanings and Perceptions from Their Creation to the Present
平安神宫和时代祭:从其诞生到现在的意义和认知的变化
  • 批准号:
    24K03398
  • 财政年份:
    2024
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Criminals and Protectors: The Multiple Meanings of Gun Possession Among Palestinians in Israel
罪犯与保护者:以色列巴勒斯坦人拥有枪支的多重含义
  • 批准号:
    2886974
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Studentship
Archiving the Architectural Works of W. M. Vories, Reconsidering its Historical Meanings and Exploring its Contemporary Significance
归档 W. M. Vories 的建筑作品,重新思考其历史意义并探索其当代意义
  • 批准号:
    23K04221
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moving Beyond Size: Word Meanings Underlying Children's Productive Vocabulary
超越大小:儿童有效词汇的词义
  • 批准号:
    2318033
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
CANVAS (Children, attitudes, norms, violence, and society): do social meanings of violence affect development of adverse outcomes?
CANVAS(儿童、态度、规范、暴力和社会):暴力的社会意义是否会影响不良结果的发展?
  • 批准号:
    ES/X008940/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Research Grant
Career Shocks and Meanings for Nurses in the Coronavirus Pandemic: From a Sustainable Career Perspective
冠状病毒大流行中护士的职业冲击和意义:从可持续职业的角度来看
  • 批准号:
    23H03189
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Social cues that scaffold formation and differentiation of word meanings in early language development
在早期语言发展中支撑词义形成和分化的社会线索
  • 批准号:
    22KJ0525
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Research on constructional meanings and functions from the perspective of frames
框架视角下的结构意义与功能研究
  • 批准号:
    22K00515
  • 财政年份:
    2022
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Consideration on meanings of Russian first census in modern history
俄罗斯第一次人口普查近代史上意义的思考
  • 批准号:
    22K01597
  • 财政年份:
    2022
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aspects and Meanings of Collaboration of Texts and Illustrations of the Nineteenth-century Ballad Collections
十九世纪歌谣集文字与插图合作的面貌与意义
  • 批准号:
    22K00442
  • 财政年份:
    2022
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了