Mathematical Sciences: Invariants for Abelian Groups and Representations of Posets

数学科学:阿贝尔群的不变量和偏序集的表示

基本信息

  • 批准号:
    9022730
  • 负责人:
  • 金额:
    $ 5.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-07-01 至 1994-12-31
  • 项目状态:
    已结题

项目摘要

The primary goal of this research is the study of the invariants for a class of torsion-free Abelian groups of finite rank known as the Butler groups. The invariants are to be examined concurrently in the context of representations of finite partially ordered sets. A study of Coxeter correspondences and almost split sequences is included in the project with the aim of expanding the menu of potentially classifiable groups and representations. The research is in the general area of algebra and is concerned with the structure theory of infinite groups having a commutative multiplicative structure - the Abelian groups. These groups arise in a variety of settings in algebra, geometry, and analysis. This research concerns the classification of invariants for selected families of these Abelian groups in anticipation of obtaining a general structure theory.
本研究的主要目的是研究 一类无挠Abel群的不变量 被称为巴特勒集团不变量将被检查 同时,在有限部分表示的上下文中, 有序集 Coxeter对应与几乎分裂的研究 序列被列入该项目的目的是扩大 潜在可分类组和表示的菜单。 这项研究是在代数的一般领域, 关于无限群的结构理论, 交换乘法结构-阿贝尔群。 这些 群出现在代数、几何和 分析. 本研究涉及不变量的分类 为这些阿贝尔群的选定家庭, 得到一般结构理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Vinsonhaler其他文献

An examination of the preparation and practice of grades 7–12 mathematics teachers from the Shandong Province in China
  • DOI:
    10.1007/s10857-012-9228-x
  • 发表时间:
    2012-10-18
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Su Liang;Sarah Glaz;Thomas DeFranco;Charles Vinsonhaler;Robin Grenier;Fabiana Cardetti
  • 通讯作者:
    Fabiana Cardetti

Charles Vinsonhaler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Vinsonhaler', 18)}}的其他基金

Mathematical Sciences: Invariants for Abelian Groups
数学科学:阿贝尔群的不变量
  • 批准号:
    8802833
  • 财政年份:
    1988
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    0196235
  • 财政年份:
    2000
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9996368
  • 财政年份:
    1998
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9996227
  • 财政年份:
    1998
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Properties of Quantum Invariants in 3-Dimensional Topology
数学科学:三维拓扑中量子不变量的性质
  • 批准号:
    9704893
  • 财政年份:
    1997
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
  • 批准号:
    9796130
  • 财政年份:
    1997
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Invariants for Knots and Links in 3-Manifolds
数学科学:3-流形中的结和链接的不变量
  • 批准号:
    9626140
  • 财政年份:
    1996
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Holomorphic Invariants of 3-Manifolds
数学科学:3-流形的全纯不变量
  • 批准号:
    9626544
  • 财政年份:
    1996
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
  • 批准号:
    9529310
  • 财政年份:
    1996
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Quantum and Finite Type Invariants of Links in 3-Manifolds, Quasicrystals
数学科学:3-流形、准晶体中链接的量子和有限型不变量
  • 批准号:
    9626404
  • 财政年份:
    1996
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Geometry and Seiberg-Witten Invariants
数学科学:代数几何和 Seiberg-Witten 不变量
  • 批准号:
    9622681
  • 财政年份:
    1996
  • 资助金额:
    $ 5.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了