Mathematical Sciences: Representation Theory

数学科学:表示论

基本信息

  • 批准号:
    9101637
  • 负责人:
  • 金额:
    $ 14.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-07-01 至 1995-06-30
  • 项目状态:
    已结题

项目摘要

This award supports the research of Professor H. Jacquet to work in automorphic functions. Professor Jacquet intends to study certain period integrals related to Gelfand triples using the relative trace formula. Modular forms arose out of Non-Euclidean geometry in the middle of the nineteenth century. Both mathematicians and physicists have thus long realized that many objects of fundamental importance are non-Euclidean in their basic nature. This field is principally concerned with questions about the whole numbers, but in its use of geometry and analysis, it retains connection to its historical roots and thus to problems in areas as diverse as gauge theory in theoretical physics and coding theory in information theory.
该奖项支持H. Jacquet教授在自同构函数方面的研究。Jacquet教授打算用相对迹公式研究与Gelfand三元组有关的某些周期积分。模形式起源于19世纪中期的非欧几里得几何。因此,数学家和物理学家很早就认识到,许多具有根本重要性的物体在其基本性质上是非欧几里得的。这个领域主要关注关于整数的问题,但在使用几何和分析时,它保留了与历史根源的联系,因此与理论物理中的规范理论和信息论中的编码理论等领域的问题联系在一起。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Herve Jacquet其他文献

Herve Jacquet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Herve Jacquet', 18)}}的其他基金

Period integrals
周期积分
  • 批准号:
    0245310
  • 财政年份:
    2003
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Standard Grant
Gelfand Pairs and Automorphic L-functions
Gelfand 对和自同构 L 函数
  • 批准号:
    9988611
  • 财政年份:
    2000
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Gelfand Pairs and Automorphic Representations
格尔凡德对和自同构表示
  • 批准号:
    9619766
  • 财政年份:
    1997
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Relative Trace Formulas
数学科学:相对微量公式
  • 批准号:
    9403538
  • 财政年份:
    1994
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Equipment 1989
数学科学研究仪器1989
  • 批准号:
    8905611
  • 财政年份:
    1989
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representation Theory
数学科学:表示论
  • 批准号:
    8801579
  • 财政年份:
    1988
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representation Theory and AutomorphicForms
数学科学:表示论和自守形式
  • 批准号:
    8502789
  • 财政年份:
    1985
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representation Theory and the L-Function
数学科学:表示论和 L 函数
  • 批准号:
    8200551
  • 财政年份:
    1982
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Representation Theory
表征论
  • 批准号:
    7901712
  • 财政年份:
    1979
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Representation Theory
表征论
  • 批准号:
    7608218
  • 财政年份:
    1976
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
  • 批准号:
    1303060
  • 财政年份:
    2013
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Hodge Theory, Complex Geometry, and Representation Theory
NSF/CBMS 数学科学区域会议 - 霍奇理论、复几何和表示论
  • 批准号:
    1137952
  • 财政年份:
    2012
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
  • 批准号:
    0758262
  • 财政年份:
    2008
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
The iconographical representation of the mathematical sciences in the 17th century
17 世纪数学科学的图像表征
  • 批准号:
    5217746
  • 财政年份:
    1999
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Research Fellowships
Mathematical Sciences: Representation Theory and Combinatorics
数学科学:表示论和组合学
  • 批准号:
    0096084
  • 财政年份:
    1999
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sheaves on Witt Schemes and Trace Formula with Application to Representation Theory
数学科学:维特方案和迹公式及其在表示论中的应用
  • 批准号:
    9700458
  • 财政年份:
    1997
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Operads, Representation Theory and Algebraic Geometry
数学科学:运算、表示论和代数几何
  • 批准号:
    9623044
  • 财政年份:
    1996
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topological Methods in Representation Theory
数学科学:表示论中的拓扑方法
  • 批准号:
    9626616
  • 财政年份:
    1996
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representation Theory and Combinatorics
数学科学:表示论和组合学
  • 批准号:
    9622985
  • 财政年份:
    1996
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Invariant Theory and Applications to Representation Theory
数学科学:不变理论及其在表示论中的应用
  • 批准号:
    9622916
  • 财政年份:
    1996
  • 资助金额:
    $ 14.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了