Mathematical Sciences: Nonlinear Elliptic and Parabolic Problems from Physical Models in Several Space Dimensions
数学科学:多个空间维度中物理模型的非线性椭圆和抛物线问题
基本信息
- 批准号:9310258
- 负责人:
- 金额:$ 6.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-01 至 1996-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
WPC 2 B P Z Courier 12cpi 3| d d 6 X @ 8 ; @ HP LaserJet IIID - BACK HPIIIDB.PRS d 6 X @ 8 ; , \ , j 5{ @ 2 # X _ F ` Courier 12cpi Courier 12cpi (Bold) . s 4 d d d , d 6 X @ 8 ; @ r 5 d d d , d ` J ; ies of materials which are magnetically saturated. Certain configurations of the m tic field have been observed experimentally, and we wish to investigate whether st s 4 This project comprises three components uniqueness of minimizers for polyconvex energy functionals that arise in nonlinear elasticity. Criteria will be develop to distinguish those deformations that are diffeomorphisms; ii) stability and interaction of vortices (or defects) in time-dependent Ginzburg-Landau or Landau- Stuart models describing superfluids or superconductors. Various conjectures by physicists and applied mathematicians will be examined; iii) minimization problems concerning ferro-magnetic materials. The goal is to determine whether configurations that have been experimentally observed occur as limits of minimizers to the corresponding magnetic energy functionals. The above project concerns three mathematical models formulated by physicists and material scientists in order to describe the behavior of certain materials. The goal of this proposal is to determine rigorously whether solutions to the given mathematical models do, indeed, exhibit the expected behavior in each case. The first problem concerns deformations of certain hyper-elastic materials in two or three space dimensions. The presence or absence of singularities (such as sharp edges or interfaces) will be examined. The second problem concerns defects in a superconducting material. It is proposed to determine how such defects interact and stabilize in time. In particular, conjectures by physicists about when defects split apart or disappear will be investigated. The third problem concerns properties of materials which are magnetically saturated. Certain configurations of the magnetic field have been observed experimentally, and we wish to investigate whether stable solutions to the mathematical model exhibit these configurations.
WPC 2 B P Z Courier 12cpi 3|d d 6 X@8;@HP LaserJet IIID-Back HPIIPRS d 6 X@8;,\,j 5{@2#X_F`快递12cpi快递12cpi(粗体)。S 4d,d6X@8;@r 5d,d‘J;几种磁饱和材料。实验上观察到了m场的某些构型,我们希望研究这个项目是否包含了非线性弹性力学中出现的多凸能量泛函极小值的三个分量唯一性。标准将被用来区分那些是微分同形的变形;ii)描述超流或超导体的含时Ginzburg-Landau或Landau-Stuart模型中涡旋(或缺陷)的稳定性和相互作用。物理学家和应用数学家的各种猜想将被检验;iii)关于铁磁材料的最小化问题。目标是确定实验观察到的构型是否作为相应磁能泛函的极小化极限出现。上述项目涉及物理学家和材料科学家为描述某些材料的行为而建立的三个数学模型。这项建议的目标是严格地确定给定数学模型的解是否确实在每种情况下都表现出预期的行为。第一个问题涉及某些超弹性材料在二维或三维空间中的变形。将检查奇点的存在或不存在(例如尖锐的边缘或界面)。第二个问题与超导材料中的缺陷有关。建议确定这些缺陷如何相互作用并及时稳定下来。特别是,物理学家关于缺陷何时分裂或消失的猜测将被调查。第三个问题涉及磁饱和材料的性质。在实验上观察到了磁场的某些构型,我们希望研究数学模型的稳定解是否表现出这些构型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia Bauman其他文献
Recommendations for Maximum Incorporation Rates of Whole Food in 90-Day Rat Feeding Studies
90 天大鼠喂养研究中全食物最大掺入率的建议
- DOI:
10.21423/jrs-v09i2goodwin - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Laurie Goodwin;K. Glenn;J. Petrick;R. Ranjan;J. Roper;Alaina Sauve;Patricia Bauman;K. Hodge;Elizabeth A. Lipscomb - 通讯作者:
Elizabeth A. Lipscomb
Health services research and health policy
- DOI:
10.1007/bf01319090 - 发表时间:
1976-12-01 - 期刊:
- 影响因子:2.200
- 作者:
H. David Banta;Patricia Bauman - 通讯作者:
Patricia Bauman
Patricia Bauman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia Bauman', 18)}}的其他基金
Analysis of Mathematical Models of Materials
材料数学模型分析
- 批准号:
0306511 - 财政年份:2003
- 资助金额:
$ 6.6万 - 项目类别:
Continuing Grant
Elliptic and Parabolic Equations for Partially Ordered Materials in Applied Fields
应用领域中偏序材料的椭圆方程和抛物方程
- 批准号:
9971974 - 财政年份:1999
- 资助金额:
$ 6.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Elliptic and Parabolic Problems from Physical Models
数学科学:物理模型中的椭圆和抛物线问题
- 批准号:
9623438 - 财政年份:1996
- 资助金额:
$ 6.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Variational Problems from Nonlinear Elasticity in Several Space Dimensions"
数学科学:“多维空间非线性弹性的变分问题”
- 批准号:
9112884 - 财政年份:1991
- 资助金额:
$ 6.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Qualitative Behavior of Solutions to Nonlinear Problems in Elasticity
数学科学:弹性非线性问题解的定性行为
- 批准号:
8912473 - 财政年份:1989
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Mixed-type Problems in Nonlinear Elasticity Related to Change of Phase
数学科学:与相变相关的非线性弹性混合型问题
- 批准号:
8704368 - 财政年份:1987
- 资助金额:
$ 6.6万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8211329 - 财政年份:1982
- 资助金额:
$ 6.6万 - 项目类别:
Fellowship Award
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
- 批准号:
1240744 - 财政年份:2012
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis - Spring 2010
CBMS 数学科学区域会议 - 非线性水波及其在波流相互作用和海啸中的应用 - 2010 年春季
- 批准号:
0938266 - 财政年份:2010
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
- 批准号:
0630571 - 财政年份:2007
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Nonlinear Dispersive and Wave Equations
NSF/CBMS 数学科学区域会议:非线性色散和波动方程
- 批准号:
0440945 - 财政年份:2005
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Mathematical Methods in Nonlinear Wave Propagation - May 13-17, 2002
NSF/CBMS 数学科学区域会议 - 非线性波传播的数学方法 - 2002 年 5 月 13-17 日
- 批准号:
0122208 - 财政年份:2002
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations & Their Applications to Evolving Surfaces, Phase Transitions & Stochastic Control
数学科学:非线性偏微分方程
- 批准号:
9817525 - 财政年份:1998
- 资助金额:
$ 6.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Elliptic Equations in Differential Geometry
数学科学:微分几何中的非线性椭圆方程
- 批准号:
9704861 - 财政年份:1997
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Interface Dynamics and Renormalization Methods for Nonlinear Systems of Equations
数学科学:非线性方程组的界面动力学和重整化方法
- 批准号:
9703530 - 财政年份:1997
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
- 批准号:
9796164 - 财政年份:1997
- 资助金额:
$ 6.6万 - 项目类别:
Standard Grant