Analysis of Partially Ordered Materials

偏序材料分析

基本信息

  • 批准号:
    1109459
  • 负责人:
  • 金额:
    $ 66.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

BaumanDMS-1109459 The goal of the project is the analysis of mathematical models described by nonlinear partial differential equations describing liquid crystal and superconducting materials, focusing on thin liquid crystal films, ferro-electric liquid crystal materials, polar-modulated liquid crystal materials such as bent-core fibers, and high-temperature superconducting materials. The investigators identify qualitative features of solutions to the mathematical models describing these phenomena, including pattern formation of various phases of the materials and the location, nature, and number of defects. The models are highly nonlinear and expressed in terms of nonconvex, second-order energies. Developing methods in partial differential equations to analyze these features is part of the project. The project is related to applications in materials. For example, physicists have proposed to build lattices of colloidal particles by coating each with a thin film of liquid crystal material in such a way that the film's defects act as natural bonding sites (i.e., chemical linking locations) between the particles. This self-assembly allows the creation of functionalized micron-sized objects similar to the molecules characteristic of organic chemistry, which can be used for particle-based bioassays and catalysis, and for photonic band-gap materials. Ferro-electric liquid crystals are used to make optical switches, nano-devices, and displays. Liquid crystal bent-core fibers have been proposed by physicists to model artificial muscles and other biological applications. High-temperature superconductors are used for small-scale sensors such as squids (superconducting quantum interference detectors) and to make powerful magnets. The project takes up the mathematical investigation of models for these applications.
鲍曼DMS-1109459 该项目的目标是分析由描述液晶和超导材料的非线性偏微分方程描述的数学模型,重点是液晶薄膜,铁电液晶材料,极化调制液晶材料,如双芯光纤和高温超导材料。 研究人员确定描述这些现象的数学模型的解决方案的定性特征,包括材料的各个阶段的图案形成以及缺陷的位置,性质和数量。 该模型是高度非线性的,并表示在非凸,二阶能量。 开发偏微分方程的方法来分析这些特征是该项目的一部分。 该项目与材料应用有关。 例如,物理学家已经提出通过用液晶材料的薄膜涂覆每个胶体颗粒来构建胶体颗粒的晶格,使得膜的缺陷充当天然结合位点(即,化学连接位置)。 这种自组装允许创建类似于有机化学分子特征的功能化微米尺寸物体,其可用于基于粒子的生物测定和催化,以及用于光子带隙材料。 铁电液晶用于制造光学开关、纳米器件和显示器。 物理学家提出了液晶双芯纤维来模拟人造肌肉和其他生物应用。 高温超导体用于小型传感器,如squids(超导量子干涉探测器)和制造强大的磁体。 该项目承担了这些应用程序的模型的数学研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricia Bauman其他文献

Recommendations for Maximum Incorporation Rates of Whole Food in 90-Day Rat Feeding Studies
90 天大鼠喂养研究中全食物最大掺入率的建议
  • DOI:
    10.21423/jrs-v09i2goodwin
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laurie Goodwin;K. Glenn;J. Petrick;R. Ranjan;J. Roper;Alaina Sauve;Patricia Bauman;K. Hodge;Elizabeth A. Lipscomb
  • 通讯作者:
    Elizabeth A. Lipscomb
Health services research and health policy
  • DOI:
    10.1007/bf01319090
  • 发表时间:
    1976-12-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    H. David Banta;Patricia Bauman
  • 通讯作者:
    Patricia Bauman

Patricia Bauman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricia Bauman', 18)}}的其他基金

Analysis of Mathematical Models of Materials
材料数学模型分析
  • 批准号:
    0306511
  • 财政年份:
    2003
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Continuing Grant
Elliptic and Parabolic Equations for Partially Ordered Materials in Applied Fields
应用领域中偏序材料的椭圆方程和抛物方程
  • 批准号:
    9971974
  • 财政年份:
    1999
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Elliptic and Parabolic Problems from Physical Models
数学科学:物理模型中的椭圆和抛物线问题
  • 批准号:
    9623438
  • 财政年份:
    1996
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Elliptic and Parabolic Problems from Physical Models in Several Space Dimensions
数学科学:多个空间维度中物理模型的非线性椭圆和抛物线问题
  • 批准号:
    9310258
  • 财政年份:
    1993
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Variational Problems from Nonlinear Elasticity in Several Space Dimensions"
数学科学:“多维空间非线性弹性的变分问题”
  • 批准号:
    9112884
  • 财政年份:
    1991
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Qualitative Behavior of Solutions to Nonlinear Problems in Elasticity
数学科学:弹性非线性问题解的定性行为
  • 批准号:
    8912473
  • 财政年份:
    1989
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mixed-type Problems in Nonlinear Elasticity Related to Change of Phase
数学科学:与相变相关的非线性弹性混合型问题
  • 批准号:
    8704368
  • 财政年份:
    1987
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8211329
  • 财政年份:
    1982
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于分数阶衍射的PT及Partially-PT对称非线性系统中的空间孤子研究
  • 批准号:
    11764022
  • 批准年份:
    2017
  • 资助金额:
    33.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
  • 批准号:
    2247163
  • 财政年份:
    2023
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Standard Grant
Dynamical structure in partially-ordered sets
偏序集合中的动态结构
  • 批准号:
    562675-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 66.94万
  • 项目类别:
    University Undergraduate Student Research Awards
Partially Ordered Item Response Modeling for Longitudinal and Multivariate Data
纵向和多元数据的偏序项目响应建模
  • 批准号:
    2120174
  • 财政年份:
    2021
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Standard Grant
Towards a sublinear summarization for streaming partially-ordered data
流式传输部分排序数据的次线性汇总
  • 批准号:
    20K11935
  • 财政年份:
    2020
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complementary study on dynamical systems and foliations using methods of partially ordered set and general topology
使用偏序集和一般拓扑方法对动力系统和叶状结构进行补充研究
  • 批准号:
    20K03583
  • 财政年份:
    2020
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Software Defined Networking with Partially Ordered Multipath Routing
SBIR 第一阶段:具有部分有序多路径路由的软件定义网络
  • 批准号:
    2014153
  • 财政年份:
    2020
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Standard Grant
Combinatorics of partially ordered sets and quantum symmetries
偏序集和量子对称性的组合
  • 批准号:
    16K05083
  • 财政年份:
    2016
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Event-based parallel computing - partially ordered event-triggered systems (POETS)
基于事件的并行计算 - 部分有序事件触发系统(POETS)
  • 批准号:
    EP/N031768/1
  • 财政年份:
    2016
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Research Grant
Self-assembly of Topologically Distinct Colloid Particles in Partially Ordered Fluids
部分有序流体中拓扑不同的胶体颗粒的自组装
  • 批准号:
    1410735
  • 财政年份:
    2014
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Continuing Grant
Item Response Models for Partially Ordered Data
部分有序数据的项目响应模型
  • 批准号:
    1229549
  • 财政年份:
    2012
  • 资助金额:
    $ 66.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了