Mathematical Sciences: Asymptotically Efficient Semiparametric Estimation
数学科学:渐近有效的半参数估计
基本信息
- 批准号:9311477
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-01 至 1996-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal is focused on estimation problems involving infinite dimensional parameters, such as cumulative distribution functions, characteristic functions, error distributions in regression models etc. Methodologically, a geometric approach has been successfully developed to solve nonparametric estimations problems from i.i.d. (independent and identically distributed) data. This approach is also applicable to a wide range of nonparametric and semiparametric problems, in which the traditional restrictive i.i.d. assumptions can be relaxed. The main emphasis is on the estimation of differentiable statistical functionals. For a general differentiable transformation of the unknown abstract parameter, the asymptotically efficient estimates will be constructed using the geometric approach. Complex statistical data that are collected in areas such as medical, econometric, and engineering reliability studies often cannot be analyzed using traditional statistical methods. The diversity of people in clinical trials, the multitude of inputs affecting economic outputs, and the intricate interaction of components affecting the performance of sophisticated electronics or equipment do not permit the use of simple statistical modeling techniques. These applications require instead a new methodology that is more flexible and yet does not sacrifice information unnecessarily. The proposed research will develop methods for estimating key features of complex statistical data. These methods do not depend on the validity of traditional assumptions. Results of this work will be applicable to a rich variety of areas, including the estimation of drug efficacy, a population profile of potential patients, proficiency characteristics for industrial output, and the probability of successful operation of electronic equipment.
该方法主要针对无限维参数的估计问题,如累积分布函数、特征函数、回归模型中的误差分布等。在方法上,已成功地发展了一种几何方法来解决I.I.D.中的非参数估计问题。(独立且同分布)数据。这种方法也适用于广泛的非参数和半参数问题,其中传统的限制性I.I.D.假设是可以放松的。主要的重点是可微统计泛函的估计。对于未知抽象参数的一般可微变换,将利用几何方法构造渐近有效估计。在医学、计量经济学和工程可靠性研究等领域收集的复杂统计数据通常无法使用传统统计方法进行分析。临床试验人员的多样性,影响经济产出的多种投入,以及影响尖端电子或设备性能的部件之间错综复杂的相互作用,都不允许使用简单的统计建模技术。相反,这些应用程序需要一种更灵活且不会不必要地牺牲信息的新方法。拟议的研究将开发评估复杂统计数据的关键特征的方法。这些方法不依赖于传统假设的有效性。这项工作的结果将适用于各种各样的领域,包括药物疗效的估计、潜在患者的人口概况、工业产出的熟练程度特征以及电子设备成功操作的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuly Koshevnik其他文献
Yuly Koshevnik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Training Grant