Mathematical Sciences: Topological Applications of Algebraic Cycles
数学科学:代数圈的拓扑应用
基本信息
- 批准号:9401533
- 负责人:
- 金额:$ 6.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-15 至 1998-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9401533 Lima-Filho The investigator will continue to explore topological properties of the groups of algebraic cycles on algebraic varieties. He has found this to be a mine of applications to topological and algebraic geometric problems. Algebraic cycles are seen as a topological group functor from the category of algebraic varieties to the category of group objects in the category of CW-complexes. This functor associates principal fibrations to closed inclusions, and their homotopy groups provide a homology theory for algebraic varieties which he wishes to understood more deeply. An intersection theory for arbitrary varieties will be developed, generalizing and simplifying an existing theory for quasiprojective varieties. On the purely topological side, the investigator's research has created equivariant infinite loop spaces using algebraic cycles, and the generalized cohomology theories thus obtained have been related with several other theories. As an outcome of this interplay between new and old theories, he has already answered long-standing conjectures about the total Chern class map and is presently computing several examples where algebraic geometry, group representation theory, and homotopy theory come together to illuminate the coefficient systems involved, the associated transfer maps, and so forth. A fundamental aspect and guiding principle in the investigator's research is its unifying character, under which diverse areas of mathematics come into play and yield multifaceted applications of his algebraic techniques. He thus obtains a highly desirable economy of thought, in the sense that a concise and unified approach to various seemingly disparate questions attains deep results about each in a short period of time. He starts by endowing basic objects in algebraic geometry, the algebraic cycles, with a topology which turns out to have remarkable properties. He then realizes that these cycles provide new invariants not only for alge braic varieties (of fundamental importance to algebraic geometers), but that they also deeply relate with ongoing mainstream research in stable homotopy theory, a major topic in algebraic topology. Other natural structures arise in this setting as he explores constructions involving his algebraic cycles. The study of cycles from an equivariant point of view thus also provides insight into various aspects of the theory of representation of finite groups and group cohomology, enhancing the usefulness of his unified approach. ***
小行星9401533 研究者将继续探索代数簇上代数圈群的拓扑性质。 他发现这是一个地雷的应用拓扑和代数几何问题。 代数圈被看作是从代数簇范畴到CW-复形范畴中的群对象范畴的拓扑群函子。 这函人协会主要纤维化封闭的夹杂物,他们的同伦群提供了一个同源理论的代数品种,他希望更深入地了解。 一个相交理论的任意品种将开发,推广和简化现有的理论quasiprojective品种。 在纯拓扑方面,研究者的研究已经使用代数圈创建了等变无限循环空间,并且由此获得的广义上同调理论与其他几个理论有关。 作为新旧理论之间相互作用的结果,他已经回答了关于全陈省身类映射的长期问题,目前正在计算几个例子,其中代数几何,群表示理论和同伦理论结合在一起,以阐明所涉及的系数系统,相关的转移映射等。 一个基本方面和指导原则,在调查员的研究是其统一的字符,根据不同领域的数学发挥作用,并产生多方面的应用,他的代数技术。 因此,他获得了一个非常可取的经济思想,在这个意义上,一个简洁和统一的方法来解决各种看似不同的问题,在很短的时间内获得了关于每个问题的深刻结果。 他首先赋予基本对象在代数几何,代数周期,与拓扑原来具有显着的性质。 然后,他意识到,这些周期提供了新的不变量,不仅为alge numerous品种(具有根本重要性的代数geometers),但他们也深深地关系到正在进行的主流研究稳定同伦理论,一个主要议题,代数拓扑。 其他自然结构出现在这种情况下,他探讨建设涉及他的代数周期。 研究周期从一个等变的角度来看,因此也提供了深入了解各个方面的理论表示的有限群和群上同调,提高实用性,他的统一办法。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paulo Lima-Filho其他文献
Multiplicative properties of the current transform regulator
- DOI:
10.1007/s00209-024-03645-y - 发表时间:
2025-01-28 - 期刊:
- 影响因子:1.000
- 作者:
Paulo Lima-Filho - 通讯作者:
Paulo Lima-Filho
Paulo Lima-Filho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paulo Lima-Filho', 18)}}的其他基金
NSF/CBMS Regional Conference in the Mathematical Sciences -- Solving Polynomial Equations
NSF/CBMS 数学科学区域会议——求解多项式方程
- 批准号:
0122220 - 财政年份:2002
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
BIOCOMPLEXITY, Incubation Activity: Application of Mathematical Methods and Scientific Computation to Complex Ecological Problems
生物复杂性,孵化活动:数学方法和科学计算在复杂生态问题中的应用
- 批准号:
0083894 - 财政年份:2000
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -- Topological and algebraic regularity properties of nuclear C*-algebras
NSF/CBMS 数学科学区域会议 -- 核 C* 代数的拓扑和代数正则性性质
- 批准号:
1138022 - 财政年份:2011
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-Knots and Topological Quantum Computing-Summer 2008
NSF/CBMS 数学科学区域会议 - 结和拓扑量子计算 - 2008 年夏季
- 批准号:
0735291 - 财政年份:2007
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Algebraic and Topological Combinatorics of Ordered Sets - 18 - 22 July, 2005
CBMS 数学科学区域会议 - 有序集的代数和拓扑组合 - 2005 年 7 月 18 - 22 日
- 批准号:
0434402 - 财政年份:2005
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Index for Proper Actions, Asymptotic Homomorphisms and Equivariant E-Theory
数学科学:适当作用的拓扑索引、渐近同态和等变 E 理论
- 批准号:
9706767 - 财政年份:1997
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topological Structure of Planar Continua
数学科学:平面连续体的拓扑结构
- 批准号:
9704903 - 财政年份:1997
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: An Experimental Tool for Topological Surface Dynamics
数学科学:拓扑表面动力学的实验工具
- 批准号:
9626884 - 财政年份:1996
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Topological Embeddings in Piecewise Linear Manifolds
数学科学:RUI:分段线性流形中的拓扑嵌入
- 批准号:
9626221 - 财政年份:1996
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Topological Methods in Representation Theory
数学科学:表示论中的拓扑方法
- 批准号:
9626616 - 财政年份:1996
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Low Dimensional Manifolds: Their Symmetries and Topological Invariants
数学科学:低维流形:它们的对称性和拓扑不变量
- 批准号:
9529310 - 财政年份:1996
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant