U.S.-Chile: Non Linear Boundary Value Problems
美国-智利:非线性边值问题
基本信息
- 批准号:9402928
- 负责人:
- 金额:$ 0.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-01 至 1997-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9402928 Schmitt This U.S.-Chile Cooperative Science award will support a collaboration between Dr. Klaus Schmitt, University of Utah, and Dr. Raul Manasevich, University of Chile, in a study on boundary value problems for nonlinear partial differential equations. The purpose of the research is to study quasilinear problems, with the goal of establishing global results about the solution structures of such problems, with emphasis on the development of a bifurcation theory. Problems with nonlinear partial differential equations of elliptic type which are parameter dependent and subject to nonlinear constraints arise in a multitude of applied areas, such as the study of porous media, plasma problems, and astrophysics. The theory of quasilinear equations is just now being developed, and an understanding of the bifurcation possibilities is an important aspect that needs to be studied. Both researchers are considered experts in the field, and their collaboration could result in a major contribution to this area. ***
施密特9402928 这个美国-智利合作科学奖将支持犹他州大学的Klaus施密特博士和智利大学的Raul Manasevich博士在非线性偏微分方程边值问题研究方面的合作。 本研究的目的是研究拟线性问题,目标是建立关于此类问题的解结构的全局结果,重点是发展分支理论。 非线性椭圆型偏微分方程的参数依赖和非线性约束的问题出现在许多应用领域,如多孔介质的研究,等离子体问题,天体物理学。 拟线性方程的理论刚刚发展起来,对分歧可能性的理解是需要研究的一个重要方面。 两位研究人员都被认为是该领域的专家,他们的合作可能会对这一领域做出重大贡献。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Klaus Schmitt其他文献
Global aspects of the continuous and discrete Newton method: A case study
连续和离散牛顿法的全局方面:案例研究
- DOI:
10.1007/978-94-009-2281-5_4 - 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
H. Peitgen;Michael Prüfer;Klaus Schmitt - 通讯作者:
Klaus Schmitt
Fixed Point Theorems of Krasnosel’skii Type In Locally Convex Spaces and Applications to Integral Equations
- DOI:
10.1007/bf03323412 - 发表时间:
2013-04-26 - 期刊:
- 影响因子:1.200
- 作者:
Le Hoan Hoa;Klaus Schmitt - 通讯作者:
Klaus Schmitt
WT1 mutations associated with incomplete Denys-Drash syndrome define a domain predicted to behave in a dominant-negative fashion.
与不完全 Denys-Drash 综合征相关的 WT1 突变定义了一个预计以显性失活方式表现的区域。
- DOI:
10.1006/geno.1994.1333 - 发表时间:
1994 - 期刊:
- 影响因子:4.4
- 作者:
Nabeel Bardeesy;Bernhard Zabel;Klaus Schmitt;Jerry Pelletier - 通讯作者:
Jerry Pelletier
Periodic solutions of nonlinear second order differential equations
- DOI:
10.1007/bf01112414 - 发表时间:
1967-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Klaus Schmitt - 通讯作者:
Klaus Schmitt
Round Table Kinderchirurgie
- DOI:
10.1007/s00608-020-00797-y - 发表时间:
2020-10-08 - 期刊:
- 影响因子:0.100
- 作者:
Klaus Schmitt - 通讯作者:
Klaus Schmitt
Klaus Schmitt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Klaus Schmitt', 18)}}的其他基金
Integrated Program for Training in Mathematics
数学培训综合计划
- 批准号:
0091675 - 财政年份:2001
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Bifurcation From Infinity for Semilinear Elliptic Partial Differential Equations: The Influence of Nonlinear Growth and Domain Geometry
数学科学:半线性椭圆偏微分方程的无穷大分岔:非线性增长和域几何的影响
- 批准号:
9201006 - 财政年份:1992
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Methods of Theoretical Physics in Topology
数学科学:拓扑理论物理方法
- 批准号:
9024934 - 财政年份:1991
- 资助金额:
$ 0.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Semi-Linear Elliptic Problems
数学科学:半线性椭圆问题
- 批准号:
9000877 - 财政年份:1990
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Differential Equations: A Qualitative and Numerical Study of Continuous and Discrete Systems
数学科学:非线性微分方程:连续和离散系统的定性和数值研究
- 批准号:
8501311 - 财政年份:1985
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
A Class of Systems of Nonlinear Differential Equations (Mathematical Sciences)
一类非线性微分方程组(数学科学)
- 批准号:
8121951 - 财政年份:1982
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
Boundary Value Problems For Systems of Nonlinear Differential Equations
非线性微分方程组的边值问题
- 批准号:
8001886 - 财政年份:1980
- 资助金额:
$ 0.63万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research Experience in Optical-Infrared Astronomy at NOIRLab in Chile
REU 站点:智利 NOIRLab 光学红外天文学研究经验
- 批准号:
2349023 - 财政年份:2024
- 资助金额:
$ 0.63万 - 项目类别:
Standard Grant
Set in stone? 'Desired whiteness' and the urban space: A collaborative research in (post) colonial Chile.
一成不变的?
- 批准号:
ES/X006867/1 - 财政年份:2024
- 资助金额:
$ 0.63万 - 项目类别:
Research Grant
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317729 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317732 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
Collaborative Research: The interplay of surface evolution, shallow magmatism, a large hydrothermal system, and hazards at Puyehue-Cordon Caulle Volcanic Complex, Chile
合作研究:智利 Puyehue-Cordon Caulle 火山群地表演化、浅层岩浆作用、大型热液系统和灾害的相互作用
- 批准号:
2317731 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Continuing Grant
Globalization and income inequality: Evidence from household surveys in Chile
全球化与收入不平等:来自智利家庭调查的证据
- 批准号:
23K01401 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
(Re)making common futures: An Ethnographic Enquiry into Citizenship Transformation in Chile.
(重新)创造共同的未来:智利公民身份转型的民族志调查。
- 批准号:
2884756 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Studentship
Quantifying the 2022-2023 altitudinal range-wide tree mass-mortality event and probability of forest loss in Central Chile
量化 2022-2023 年智利中部海拔范围内树木大量死亡事件和森林丧失的概率
- 批准号:
NE/Y004205/1 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Cold War Convergence: The Making of a Chile-California Scientific Network
博士论文研究:冷战趋同:智利-加州科学网络的建立
- 批准号:
2240908 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Standard Grant
Mid-scale RI-2: Advanced Millimeter Survey Instrumentation in Chile
中型 RI-2:智利的先进毫米波测量仪器
- 批准号:
2153201 - 财政年份:2023
- 资助金额:
$ 0.63万 - 项目类别:
Cooperative Agreement