Mathematical Sciences: Computed Tomography and Sampling
数学科学:计算机断层扫描和采样
基本信息
- 批准号:9404436
- 负责人:
- 金额:$ 5.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-06-15 至 1997-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9404436 Faridani Tomography produces the reconstruction of a generalized density function f from a large number of its line integrals. Beyond its initial use in medical imaging, it has found a growing number of scientific and industrial applications. Ordinary tomography is not local; the standard formulas for reconstruction at a single point require measurements at all lines within some plane containing the point. Local tomography produces the reconstruction of a linear combination of functions related to f. This reconstruction is local; for reconstruction at a point, attenuation measurements are needed only along lines very close to that point. This makes it possible to reconstruct a region of interest within a large object without having to scan the whole object. The term computed tomography describes a class of methods for imaging the interior of opaque objects. Characteristic of these methods is that the image is computed from a large number of indirect measurements. Mathematically, the image represents some density function, and the measurements are line integrals of this function. A well-known example is CAT scans. Here the density function is the x-ray absorption coefficient, and the measurements are obtained by recording the attenuation of thin x-ray beams traversing the patient. Beyond its original application in medical imaging, computed tomography has found a growing number of scientific and industrial applications. The research involves applications of tomography in areas such as medical imaging (imaging the coronary arterial tree), biological research (imaging the fine structure of tissue using the emerging technology of high-resolution Micro-CT scanners), and quantum optics. Part of this research project concerns the technique of `local tomography'. While ordinary tomography requires scanning the whole object, local tomography allows for scanning only a region of interest. Local tomography is of practical interest sin ce it requires less expensive scanning equipment, reduces x-ray exposure, and makes it possible to image objects too large to be scanned in their entirety. At present, local tomography allows one to identify the shapes of different features, but does not produce the correct density differences. The goal is to develop a method which allows reconstruction of density differences. This will further increase the usefulness of local tomography for many applications. Furthermore, questions of optimal sampling, resolution, and reconstruction algorithms in three-dimensional local tomography will be investigated in collaboration with researchers at the Mayo Clinic, who are building a high-resolution Micro-CT scanner. The second part of this research continues work in Shannon sampling theory and its application to computed tomography. Shannon sampling theory is of fundamental importance in signal processing. The aliasing error for sampling non-bandlimited functions on non-equidistant but periodic sampling sets will be investigated, and more general classes of sampling sets will be studied. The results will be applied to computed tomography, resulting in error estimates and new efficient sampling schemes. The deeper understanding of optimal sampling and reconstruction algorithms thus obtained will allow to fully exploit the capabilities of current tomographic scanners and have implications for the design of future equipment.
9404436法里达尼层析成像从大量线积分中产生广义密度函数f的重建。除了最初用于医学成像之外,它在科学和工业上的应用也越来越多。普通断层扫描不是局部的;单点重建的标准公式要求在包含该点的某一平面内的所有直线上进行测量。局部层析成像产生与f相关的函数的线性组合的重建。这种重建是局部的;对于某一点的重建,只需要沿着非常接近该点的线进行衰减测量。这使得在不扫描整个物体的情况下重建一个大物体内感兴趣的区域成为可能。术语计算机断层扫描描述了对不透明物体内部成像的一类方法。这些方法的特点是图像是由大量的间接测量计算得到的。从数学上讲,图像代表某个密度函数,测量结果是该函数的线积分。一个众所周知的例子是CAT扫描。这里的密度函数是x射线吸收系数,通过记录穿过患者的细x射线束的衰减来获得测量值。除了最初在医学成像中的应用之外,计算机断层扫描在科学和工业上的应用也越来越多。该研究涉及断层扫描在医学成像(冠状动脉树成像)、生物研究(利用高分辨率微型ct扫描仪的新兴技术对组织精细结构成像)和量子光学等领域的应用。该研究项目的一部分涉及“局部断层扫描”技术。普通断层扫描需要扫描整个物体,而局部断层扫描只允许扫描感兴趣的区域。局部层析成像具有实际意义,因为它需要更便宜的扫描设备,减少x射线曝光,并且可以对大到无法全部扫描的物体进行成像。目前,局部层析成像允许人们识别不同特征的形状,但不能产生正确的密度差。我们的目标是开发一种可以重建密度差的方法。这将进一步提高局部断层扫描在许多应用中的实用性。此外,三维局部断层扫描的最佳采样、分辨率和重建算法问题将与梅奥诊所的研究人员合作进行研究,他们正在建造一个高分辨率的Micro-CT扫描仪。本研究的第二部分继续研究香农采样理论及其在计算机断层扫描中的应用。香农采样理论在信号处理中具有重要的基础意义。我们将研究非等距周期性采样集上采样非带限函数的混叠误差,并研究更一般的采样集。结果将应用于计算机断层扫描,产生误差估计和新的有效采样方案。由此获得的对最佳采样和重建算法的更深入理解将允许充分利用当前层析扫描仪的能力,并对未来设备的设计产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adel Faridani其他文献
On Numerical Analysis of View-Dependent Derivatives in Computed Tomography
- DOI:
10.1007/s10851-015-0569-9 - 发表时间:
2015-03-14 - 期刊:
- 影响因子:1.500
- 作者:
Adel Faridani;Ryan Hass - 通讯作者:
Ryan Hass
Adel Faridani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adel Faridani', 18)}}的其他基金
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
- 批准号:
2349230 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Continuing Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Cooperative Agreement
Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
- 批准号:
AH/Y007654/1 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
- 批准号:
EP/Z000467/1 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
- 批准号:
EP/Z000580/1 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Research Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
- 批准号:
2326751 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
- 批准号:
2341900 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
- 批准号:
2342821 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Standard Grant
Meta-analysis for environmental sciences
环境科学荟萃分析
- 批准号:
NE/Y003721/1 - 财政年份:2024
- 资助金额:
$ 5.8万 - 项目类别:
Training Grant