Mathematical Sciences: Formation Process and 3-D Dynamics of Vortex Rings
数学科学:涡环的形成过程和 3-D 动力学
基本信息
- 批准号:9408697
- 负责人:
- 金额:$ 4.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-01 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9408697 Nitsche The goal of the present project is to perform numerical investigations to develop a better understanding of vortex ring dynamics. The case is considered in which a vortex ring is formed by ejecting an amount of fluid from an opening. In the first part of the project, the focus will be on the initial formation process of axisymmetric rings. Viscous effects dominate the flow in an initial time interval and affect the vortex trajectory and total shed circulation. The effects of viscosity by adapting a successful 2-dimensional Navier Stokes solver for high Reynolds number flow to the axisymmetric case will be investigated. Inviscid effects of the flow using a vortex sheet model will also be studied in order to determine whether present similarity theory predictions can be adjusted to better predict the initial flow. The second part of the project concerns 3-dimensional dynamics of vortex rings formed at an opening. The development of a numerical method to compute 3-dimensional vortex sheet separation at an edge will enable the study of the stability of these flows, as well as the effects of nonaxisymmetric openings and nonaxisymmetric forcing. For this purpose, a 3-dimensional vortex filament method will be developed which incorporates vortex separation at a sharp edge and implements a fast summation algorithm to enable high resolution calculations. Understanding the dynamics of vortex rings is essential to understand more complicated flows such as those that occur in combustion processes, or in the airborne vortex structures presenting a hazard to aircraft. An inviscid numerical model has been developed for axisymmetric vortex rings generated at a circular opening. This model was proven by comparison with experiment to recover detailed information about the real flow. In the present work, this model will be extended to 3-dimensional flows, and will be used to study the stability of the flows, the effects of non-axisymmetric openings a nd nonaxisymmetric forcing, as well as the potential applicability of present theoretical results to predict the flow. Several of these aspects of the flow are difficult to understand experimentally or analytically, and the computations promise to give a deeper insight into the flow dynamics. In order to perform this work, current numerical tools available for 2-dimensional flows will be expanded to 3-dimensions.
[408697] Nitsche本项目的目标是进行数值研究,以更好地理解涡旋环动力学。考虑通过从开口喷射一定数量的流体而形成旋涡环的情况。在项目的第一部分,重点将放在轴对称环的初始形成过程上。粘滞效应在初始时间间隔内占主导地位,并影响涡轨迹和总流道环流。通过将高雷诺数流动的成功的二维Navier Stokes求解器应用于轴对称情况,研究了粘度的影响。使用涡片模型的流动的无粘效应也将被研究,以确定目前的相似理论预测是否可以调整,以更好地预测初始流动。该项目的第二部分涉及在开口处形成的涡环的三维动力学。发展一种计算三维边缘涡片分离的数值方法,将有助于研究这些流动的稳定性,以及非轴对称开孔和非轴对称强迫的影响。为此,将开发一种三维涡丝方法,该方法在尖锐边缘处结合涡分离,并实现快速求和算法,以实现高分辨率计算。了解涡流环的动力学对于理解更复杂的流动是至关重要的,比如那些发生在燃烧过程中的流动,或者在对飞机构成危险的空中涡流结构中。建立了在圆开口处产生轴对称涡环的无粘数值模型。通过与实验的对比,验证了该模型能较好地恢复实际流场的详细信息。在本工作中,该模型将扩展到三维流动,并将用于研究流动的稳定性,非轴对称开孔和非轴对称强迫的影响,以及现有理论结果在预测流动方面的潜在适用性。这些流动的一些方面很难通过实验或分析来理解,而计算有望对流动动力学有更深入的了解。为了完成这项工作,目前可用于二维流动的数值工具将扩展到三维。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Meiss其他文献
James Meiss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Meiss', 18)}}的其他基金
The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
- 批准号:
1812481 - 财政年份:2018
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
- 批准号:
1211350 - 财政年份:2012
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Chaos and Bifurcations in Volume-Preserving Dynamics
体积保持动力学中的混沌和分岔
- 批准号:
0707659 - 财政年份:2007
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Geometry and Computation of Dynamics for Conservative Systems
保守系统的几何和动力学计算
- 批准号:
0202032 - 财政年份:2002
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Vertical Integration of Research and Education in Applied Mathematics
应用数学研究与教育的垂直整合
- 批准号:
9810751 - 财政年份:1999
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Destruction of Chaos and Detection of Order in Multi-dimensional Dynamical Systems
多维动力系统中混沌的破坏和秩序的检测
- 批准号:
9971760 - 财政年份:1999
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
- 批准号:
9623216 - 财政年份:1996
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Graduate Research Traineeship in Applied Mathematics
数学科学:应用数学研究生研究实习
- 批准号:
9256335 - 财政年份:1993
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Mathematical Sciences: From Tori to Cantori: Symplectic Mappings
数学科学:从 Tori 到 Cantori:辛映射
- 批准号:
9305847 - 财政年份:1993
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Transport for Symplectic Mapping
数学科学:辛映射的传输
- 批准号:
9001103 - 财政年份:1990
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Mathematical Modeling of Island Formation in Strained Semiconductor Films
数学科学:应变半导体薄膜中岛形成的数学模型
- 批准号:
9622930 - 财政年份:1996
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Pattern Formation Relevant to Turing and Morphological Instabilities: Comparison of Theory with Experiment
数学科学:与图灵和形态不稳定性相关的模式形成:理论与实验的比较
- 批准号:
9531797 - 财政年份:1996
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Pattern Formation in Higher Order Differential Equations
数学科学:高阶微分方程的模式形成
- 批准号:
9622307 - 财政年份:1996
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Modeling of Pattern Formation by Cellular Tractions on in vitro Extracellular Matrix
数学科学:体外细胞外基质上细胞牵引的图案形成模型
- 批准号:
9500766 - 财政年份:1995
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Pattern Formation, Turbulence and Singularities in PDEs
数学科学:偏微分方程中的模式形成、湍流和奇异性
- 批准号:
9302013 - 财政年份:1994
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry-Breaking Bifurcations and Pattern Formation
数学科学:对称破缺分岔和模式形成
- 批准号:
9404266 - 财政年份:1994
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Model Mechanisms for the Formation and Spatial Patterning of Teeth Primordia
数学科学:牙齿原基形成和空间图案的模型机制
- 批准号:
9106848 - 财政年份:1992
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Instabilities and Pattern Formation in Flames
数学科学:火焰中的不稳定性和模式形成
- 批准号:
9104029 - 财政年份:1991
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Numerical Computation of Pattern Formation in Combustion
数学科学:燃烧模式形成的数值计算
- 批准号:
8922716 - 财政年份:1990
- 资助金额:
$ 4.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical Models for Biological Pattern Formation
数学科学:生物模式形成的数学模型
- 批准号:
9003339 - 财政年份:1990
- 资助金额:
$ 4.8万 - 项目类别:
Continuing Grant