Chaos and Bifurcations in Volume-Preserving Dynamics

体积保持动力学中的混沌和分岔

基本信息

  • 批准号:
    0707659
  • 负责人:
  • 金额:
    $ 51.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

AbstractRegular, quasiperiodic motion is ubiquitous in dynamical systems with sufficient symmetry. A prominent example occurs in the Hamiltonian or symplectic case, where these "invariant tori" persist---even for nearly-integrable motion, as is explained by "KAM theory." The destruction of tori in the two-dimensional case is explained by Aubry-Mather theory and renormalization results. However, a concomitant understanding of the destruction of tori upon perturbation in higher dimensions has proved elusive. In this proposal, the implications of integrability, due to symmetries and invariants, of volume-preserving dynamics will be investigated. The loss of integrability under perturbation will be studied by a combination of analytical (Aubry's anti-integrable limit, Fourier series) and numerical (invariant manifold and continuation) techniques. Tori are both created and destroyed by bifurcations, and a study of the normal forms for codimension-one and two bifurcations of fixed points will lead to classification possible phenomena. Transport will be investigated numerically with the goal of developing analytical measures of flux and transport distributions. In a second project, the PI will investigate bifurcations in nonsmooth systems appropriate to the modeling of chemical reactions, the systematic simplification of these systems by center manifold reduction, as well as the study of transport caused by weak coupling of chaotic motion to regular motion.Conservative dynamical models are used in designing particle accelerators, obtaining rates for simple chemical reactions, calculating confinement times in plasma fusion devices, understanding the spectra of highly excited atomic systems, and designing efficient spacecraft trajectories. Dynamics in such systems is often chaotic and prediction of individual trajectories is difficult; nevertheless, chaos can be profitably utilized, for example, to improve efficiency of spacecraft trajectories, by judiciously applying small course corrections, or to enhance the lifetimes of particles in confinement devices and the rates of chemical reactions. Volume-preserving dynamics models the flow of incompressible fluids and magnetic fields and a quantitative understanding of chaos in these systems is crucial for the development of efficient mixing in microscale bioreactors as well as of predictive planetary scale weather models. Most of our current theoretical understanding is limited to the two-dimensional case that is appropriate for flows in rapidly rotating or thin layers of fluid. While this has been useful in the understanding of such phenomena as the trapping of nutrients in gulf stream rings, the formation of the ozone hole and the creation of vortex-induced mixing in sinuous tubes, even in these systems, three-dimensional, chaos-induced transport needs to be understood. The PI seeks to develop analytical and computational methods for the study of regular and chaotic volume-preserving motion both to contribute broadly to our fundamental understanding of the richness of the behavior of low-dimensional deterministic evolution, and, to relate it to mixing and transport.
摘要在具有充分对称性的动力系统中,规则的准周期运动是普遍存在的。一个突出的例子出现在哈密顿或辛的情况下,其中这些“不变环面”仍然存在-甚至对于近乎可积的运动,正如“KAM理论”所解释的那样。用Aubry-Mather理论和重整化结果解释了二维环的破坏。然而,对环面在高维微扰下的破坏的理解已被证明是难以捉摸的。在这个方案中,将研究由于对称性和不变量而导致的体积保持动力学的可积性的含义。微扰下的可积性损失将通过分析(Aubry反可积极限,傅立叶级数)和数值(不变流形和连续)技术的组合来研究。环面既有由分叉产生的,也有由分叉破坏的,对不动点的余维一分叉和二分叉的范式的研究将导致分类可能的现象。将对输送进行数值研究,目的是发展通量和输送分布的分析措施。在第二个项目中,PI将研究适合于化学反应建模的非光滑系统中的分叉,通过中心流形缩减对这些系统的系统简化,以及研究混沌运动与规则运动的弱耦合引起的输运。保守的动力学模型被用于设计粒子加速器,获得简单化学反应的速率,计算等离子体聚变设备中的限制时间,了解高激发原子系统的光谱,以及设计有效的航天器轨迹。这类系统中的动力学往往是混乱的,很难预测个别轨迹;然而,混沌可以被有益地利用,例如,通过明智地应用小航向校正来提高航天器轨迹的效率,或延长限制装置中粒子的寿命和化学反应的速率。体积守恒动力学模拟了不可压缩流体和磁场的流动,对这些系统中混沌的定量理解对于发展微尺度生物反应器中的有效混合以及预测行星尺度的天气模式至关重要。我们目前的大多数理论理解仅限于二维情况,适用于快速旋转或薄层流体中的流动。虽然这有助于理解湾流环中营养物质的捕获、臭氧空洞的形成和弯曲管中涡旋诱导的混合等现象,但即使在这些系统中,也需要理解三维的、由混沌引起的传输。PI试图发展分析和计算方法来研究规则和混沌的体积保持运动,这既有助于我们对低维确定性演化行为的丰富性的基本理解,也有助于将其与混合和运输联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Meiss其他文献

James Meiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Meiss', 18)}}的其他基金

The Geometry of Transport in Symplectic and Volume-Preserving Dynamics
辛和保体积动力学中的输运几何
  • 批准号:
    1812481
  • 财政年份:
    2018
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Structure, Transport, and Chaos in Volume-Preserving Dynamics
体积保持动力学中的结构、传输和混沌
  • 批准号:
    1211350
  • 财政年份:
    2012
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Geometry and Computation of Dynamics for Conservative Systems
保守系统的几何和动力学计算
  • 批准号:
    0202032
  • 财政年份:
    2002
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Vertical Integration of Research and Education in Applied Mathematics
应用数学研究与教育的垂直整合
  • 批准号:
    9810751
  • 财政年份:
    1999
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Destruction of Chaos and Detection of Order in Multi-dimensional Dynamical Systems
多维动力系统中混沌的破坏和秩序的检测
  • 批准号:
    9971760
  • 财政年份:
    1999
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Transition to Chaos in Multidimensional Hamiltonian Systems
数学科学:多维哈密顿系统中向混沌的转变
  • 批准号:
    9623216
  • 财政年份:
    1996
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Formation Process and 3-D Dynamics of Vortex Rings
数学科学:涡环的形成过程和 3-D 动力学
  • 批准号:
    9408697
  • 财政年份:
    1994
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Graduate Research Traineeship in Applied Mathematics
数学科学:应用数学研究生研究实习
  • 批准号:
    9256335
  • 财政年份:
    1993
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
Mathematical Sciences: From Tori to Cantori: Symplectic Mappings
数学科学:从 Tori 到 Cantori:辛映射
  • 批准号:
    9305847
  • 财政年份:
    1993
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Transport for Symplectic Mapping
数学科学:辛映射的传输
  • 批准号:
    9001103
  • 财政年份:
    1990
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant

相似海外基金

Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
  • 批准号:
    23K17657
  • 财政年份:
    2023
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Arctic sea ice and bifurcations in a hierarchy of simplemodels (tentative)
简单模型层次结构中的北极海冰和分叉(暂定)
  • 批准号:
    2277781
  • 财政年份:
    2023
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Studentship
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
  • 批准号:
    2246630
  • 财政年份:
    2023
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
  • 批准号:
    EP/W009455/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Research Grant
Towards universality of delayed and quickened bifurcations in biological signalling
迈向生物信号传导中延迟和加速分歧的普遍性
  • 批准号:
    EP/W032317/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Research Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2021
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Discovery Grants Program - Individual
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
  • 批准号:
    2204758
  • 财政年份:
    2021
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Continuing Grant
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
  • 批准号:
    2005262
  • 财政年份:
    2020
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
  • 批准号:
    1933583
  • 财政年份:
    2020
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Standard Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2019
  • 资助金额:
    $ 51.15万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了