Singular Perturbation & Riemann Problems

奇异扰动

基本信息

  • 批准号:
    9501255
  • 负责人:
  • 金额:
    $ 10.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-11-01 至 1999-04-30
  • 项目状态:
    已结题

项目摘要

9501255 Schecter and Lin The investigators propose to continue their research on composite wave-front solutions for singularly perturbed partial differential equations and on Riemann problems for systems of conservation laws. Lin proposes to extend his earlier work on the construction of asymptotic expansions for composite wave-front solutions of reaction-diffusion equations, and on a shadowing lemma approach to proving that there is a true solution near such an expansion, to more general singularly perturbed partial differential equations and to partially singularly perturbed systems. He also proposes to extend to higher dimensional systems the SLEP method for studying the stability of such solutions in a special case. Schecter proposes to build on earlier work that characterized structurally stable strictly hyperbolic Riemann solutions for systems of two conservation laws in one space dimension. He proposes in particular to extend this work to the non-strictly-hyperbolic case, to find all codimension one Riemann solutions by examining the violation of each of the conditions for structural stability, and to study each codimension one bifurcation in detail. Schecter and Lin together propose to look at whether Lin's approach to singular perturbation problems will enable one to regard a Riemann problem solution as the start of an asymptotic expansion of a solution to an associated parabolic problem. %%% Sharp wave fronts occur in many areas of science. From the mathematical viewpoint, they arise as solutions of partial differential equations that model various physical situations. The investigators propose to continue their research on wave fronts. For one type of partial differential equation, reaction-diffusion equations, Lin has developed a method of calculating formal solutions in which several sharp fronts separate more slowly changing portions of the solution. He has also developed a rigorous method, modeled on the "shadowing lemma " of dynamical systems theory, of showing that there is a true solution near the calculated formal solution. He proposes to extend this work to more general partial differential equations. He also proposes to use his approach to extend a technique that has been used in a special case to study the stability of such solutions. For another type of partial differential equation, systems of two conservation laws in one space dimension, Schecter has studied solutions in which jump discontinuities separate slowly changing portions. These arise as solutions of Riemann problems, in which the initial state of the system consists of two constant values separated by a single jump. Schecter has characterized the Riemann solutions that are structurally stable, in the sense that the basic character of the solution does not change when the initial states are varied slightly. He proposes to extend this work in a number of directions, for example, by identifying the simplest ways in which structural stability can break down. Schecter and Lin together propose to look at whether Lin's approach to calculating formal solutions with sharp wave fronts will enable one to a regard a Riemann solution as the start of such a formal solution to a more realistic partial differential equation. ***
9501255 Schecter和Lin研究人员建议继续研究奇摄动偏微分方程的复合波前解和守恒律系统的黎曼问题。 林建议延长他早期的工作建设的渐近展开复合波前解决方案的反应扩散方程,并在一个阴影引理的方法来证明,有一个真正的解决方案附近的这种扩张,更一般的奇摄动偏微分方程和部分奇摄动系统。 他还建议扩展到高维系统的SLEP方法研究的稳定性,这种解决方案在特殊情况下。 Schecter建议建立在早期的工作,其特点是结构稳定的严格双曲黎曼解系统的两个守恒律在一个空间维度。 他建议特别是延长这项工作的非严格双曲的情况下,找到所有余维一黎曼解决方案,通过检查违反每个条件的结构稳定性,并研究每个余维一分歧的详细情况。 Schecter和林一起提出看看是否林的方法奇异摄动问题将使人们能够把黎曼问题的解决方案作为开始的渐近展开的解决方案,以相关的抛物问题。 尖锐的波前出现在许多科学领域。 从数学的角度来看,它们是模拟各种物理情况的偏微分方程的解。 研究人员建议继续他们对波阵面的研究。 对于一种类型的偏微分方程,反应扩散方程,林已经开发了一种计算形式解的方法,其中几个尖锐的前沿分离更缓慢变化的部分的解决方案。 他还开发了一种严格的方法,仿照“阴影引理“的动力系统理论,显示有一个真正的解决方案附近的计算正式解决方案。 他建议将这项工作扩展到更一般的偏微分方程。 他还建议使用他的方法来扩展一种在特殊情况下使用的技术,以研究这种解决方案的稳定性。 对于另一种类型的偏微分方程,系统的两个守恒律在一个空间维,谢克特研究的解决方案,其中跳跃间断分离缓慢变化的部分。 这些都是黎曼问题的解,在黎曼问题中,系统的初始状态由两个被单个跳跃分开的常数值组成。 Schecter已经描述了黎曼解的结构稳定性,即当初始状态稍微改变时,解的基本特征不会改变。 他建议在许多方向上扩展这项工作,例如,通过确定结构稳定性可能崩溃的最简单方式。 Schecter和林一起建议看看是否林的方法来计算正式的解决方案与尖锐的波前将使一个方面的黎曼解开始这样一个正式的解决方案,以一个更现实的偏微分方程。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Schecter其他文献

Steam condensation waves in water-saturated porous rock
  • DOI:
    10.1007/bf02970859
  • 发表时间:
    2004-09-01
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Johannes Bruining;Dan Marchesin;Stephen Schecter
  • 通讯作者:
    Stephen Schecter
Structure of the first-order solution set for a class of nonlinear programs with parameters
  • DOI:
    10.1007/bf01582165
  • 发表时间:
    1986-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Stephen Schecter
  • 通讯作者:
    Stephen Schecter
Exchange lemmas 1: Deng's lemma
  • DOI:
    10.1016/j.jde.2007.08.011
  • 发表时间:
    2008-07
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Stephen Schecter
  • 通讯作者:
    Stephen Schecter
Game Theory in Action: An Introduction to Classical and Evolutionary Models
博弈论的实践:经典模型和进化模型简介
  • DOI:
    10.1515/9781400880881
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Schecter;Herbert Gintis
  • 通讯作者:
    Herbert Gintis
Codimension-One Riemann Solutions: Missing Rarefactions Adjacent to Doubly Sonic Transitional Waves

Stephen Schecter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Schecter', 18)}}的其他基金

Concatenated Traveling Waves
串联行波
  • 批准号:
    1211707
  • 财政年份:
    2012
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Standard Grant
Stability of Patterns
模式的稳定性
  • 批准号:
    0708386
  • 财政年份:
    2007
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Continuing Grant
The Dafermos Regularization of a System of Conservation Laws
守恒定律体系的达弗莫斯正则化
  • 批准号:
    0406016
  • 财政年份:
    2004
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Standard Grant
Homoclinic and Heteroclinic Bifurcations, Shock Waves, and Singular Perturbations
同宿和异宿分岔、冲击波和奇异扰动
  • 批准号:
    9973105
  • 财政年份:
    1999
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Theory and Applications of Homo- clinic and Heteroclinic Bifurcation
数学科学:同宿和异宿分岔的理论与应用
  • 批准号:
    9205535
  • 财政年份:
    1992
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Theory and Applications of Homoclinicand Heteroclinic Bifurcation
数学科学:同宿和异宿分岔的理论与应用
  • 批准号:
    9002803
  • 财政年份:
    1990
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Continuing Grant
Vector Fields in the Plane
平面上的矢量场
  • 批准号:
    7902524
  • 财政年份:
    1979
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Standard Grant

相似海外基金

Fundamental Fields, Black Holes and Perturbation Theory
基本场、黑洞和微扰理论
  • 批准号:
    2887309
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Studentship
Functional regulation of neuronal networks by laser-induced mechanical perturbation
激光诱导机械扰动对神经网络的功能调节
  • 批准号:
    23H03501
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Problems Through a New Perturbation Theory
通过新的微扰理论解决统计问题
  • 批准号:
    2311252
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Standard Grant
CRISPR-based genome and epigenome perturbation in stem cells to understand and reverse osteoarthritis risk
基于 CRISPR 的干细胞基因组和表观基因组扰动,以了解和逆转骨关节炎风险
  • 批准号:
    2884848
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Studentship
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New software tools for differential analysis of single-cell genomics perturbation experiments
用于单细胞基因组扰动实验差异分析的新软件工具
  • 批准号:
    10735033
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
Technology for evaluating drug-binding responses to small-molecule perturbation
评估药物对小分子扰动的结合反应的技术
  • 批准号:
    10711337
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
Determining the role of social reward learning in social anhedonia in first-episode psychosis using motivational interviewing as a probe in a perturbation-based neuroimaging approach
使用动机访谈作为基于扰动的神经影像学方法的探索,确定社交奖励学习在首发精神病社交快感缺乏中的作用
  • 批准号:
    10594181
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
Study of resonant magnetic perturbation penetration induced by external coil in torus magnetized plasmas
环面磁化等离子体中外部线圈引起的共振磁扰动穿透研究
  • 批准号:
    23H01159
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
  • 批准号:
    10698836
  • 财政年份:
    2023
  • 资助金额:
    $ 10.13万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了