The Dafermos Regularization of a System of Conservation Laws
守恒定律体系的达弗莫斯正则化
基本信息
- 批准号:0406016
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lin and Schecter propose to use the Dafermos regularization of a system of conservation laws to approach difficult questions concerning systems of viscous conservation laws. The former is an artificial mathematicalconstruct; the latter are ubiquitous in the sciences, where they represent conservation of mass, momentum, energy, etc. in many situations. Building on their earlier work, Lin and Schecter propose to complete their analysis of the spectrum of the linearized Dafermos operator. They propose to use this analysis to determine the stability of Riemann solutions as asymptotic states of viscous conservation laws. They also propose to use it to analyze and improve Dafermos regularization-based numerical methods for computing curves of Riemann solutions. They propose to investigate issuesin geometric singular perturbation theory raised by the Dafermosregularization. In addition, Schecter and Lin will continue work withcollaborators on finding traveling wave solutions of viscous conservation laws with reaction terms; subjects under investigation include liquid-vapor phase transitions and methods of oil recovery that use heat. They will investigate the use of the Dafermos regularization in such problems.In many areas of science and technology, various situations involving fluid flow, such as oil recovery and flow of thin liquid films used inmanufacturing, can be mathematically modeled by equations called viscous conservation laws. The models become more tractable when one drops various terms, leaving only a system of conservation laws. For these equations one can often construct explicit solutions, called Riemann solutions, that frequently involve jumps that move with varying speeds. An example from oil recovery using injection of water is a moving front that is mostly water on one side and mostly oil on the other; the water pushes the oil toward thewell. One reason Riemann solutions are important is that it is believed that in many situations, solutions of viscous conservation laws, appropriately rescaled, tend to look more and more like Riemann solutions as time goes on. However, there are only a few, rather artificial situations is which this behavior is proved. A related fact is that we do not have good mathematical techniques to check whether Riemann solutions are stable, i.e., are really approached for a significant set of initial configurationsof the viscous conservation laws. Lin and Schecter have developed a new approach to these issues using a different simplification of the viscous conservation laws, the so-called Dafermos regularization. This equation admits a smoothed-out version of the Riemann solution as a steady-state. In principle, one can check its stability by relatively familiar mathematical methods. Lin and Schecter plan to continue their work on the stability of these smoothed Riemann solutions, and to use this work to approach the physically relevant situation.
林和Schecter建议使用的Dafermos正规化系统的守恒律来解决困难的问题有关系统的粘性守恒律。 前者是一种人为的物理概念;后者在科学中无处不在,在许多情况下,它们代表了质量、动量、能量等守恒。 在他们早期工作的基础上,Lin和Schecter建议完成他们对线性化Dafermos算子谱的分析。 他们建议使用这种分析来确定作为粘性守恒律渐近状态的黎曼解的稳定性。 他们还建议使用它来分析和改进基于Dafermos正则化的数值方法,用于计算黎曼解的曲线。 他们建议调查issuesin几何奇异摄动理论提出的Dafermosregularization。此外,Schecter和Lin将继续与合作者一起寻找带有反应项的粘性守恒定律的行波解;正在调查的主题包括液-汽相变和使用热量的采油方法。 在许多科学和技术领域,涉及流体流动的各种情况,如石油开采和制造业中使用的薄液膜流动,可以通过称为粘性守恒定律的方程进行数学建模。 当我们去掉各种项,只留下一个守恒定律系统时,模型就变得更容易处理了。 对于这些方程,人们通常可以构造显式解,称为黎曼解,它经常涉及以不同速度移动的跳跃。 使用注水采油的一个例子是一个移动的前沿,一边主要是水,另一边主要是油;水把油推向油井。 黎曼解很重要的一个原因是,人们相信在许多情况下,粘性守恒律的解,经过适当的重新标度,随着时间的推移,看起来越来越像黎曼解。然而,只有少数几个,而不是人为的情况是证明这种行为。 一个相关的事实是,我们没有很好的数学技术来检查Riemann解是否稳定,即,是真正接近的一组重要的初始配置的粘性守恒定律。 Lin和Schecter开发了一种新的方法来解决这些问题,使用粘性守恒律的不同简化,即所谓的Dafermos正则化。 这个方程允许黎曼解的平滑版本作为稳态。 原则上,人们可以通过相对熟悉的数学方法来检查其稳定性。 Lin和Schecter计划继续研究这些光滑黎曼解的稳定性,并利用这项工作来接近物理相关的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Schecter其他文献
Steam condensation waves in water-saturated porous rock
- DOI:
10.1007/bf02970859 - 发表时间:
2004-09-01 - 期刊:
- 影响因子:2.100
- 作者:
Johannes Bruining;Dan Marchesin;Stephen Schecter - 通讯作者:
Stephen Schecter
Structure of the first-order solution set for a class of nonlinear programs with parameters
- DOI:
10.1007/bf01582165 - 发表时间:
1986-01-01 - 期刊:
- 影响因子:2.500
- 作者:
Stephen Schecter - 通讯作者:
Stephen Schecter
Exchange lemmas 1: Deng's lemma
- DOI:
10.1016/j.jde.2007.08.011 - 发表时间:
2008-07 - 期刊:
- 影响因子:2.4
- 作者:
Stephen Schecter - 通讯作者:
Stephen Schecter
Game Theory in Action: An Introduction to Classical and Evolutionary Models
博弈论的实践:经典模型和进化模型简介
- DOI:
10.1515/9781400880881 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Stephen Schecter;Herbert Gintis - 通讯作者:
Herbert Gintis
Codimension-One Riemann Solutions: Missing Rarefactions Adjacent to Doubly Sonic Transitional Waves
- DOI:
10.1023/a:1015126703505 - 发表时间:
2002-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Stephen Schecter - 通讯作者:
Stephen Schecter
Stephen Schecter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Schecter', 18)}}的其他基金
Homoclinic and Heteroclinic Bifurcations, Shock Waves, and Singular Perturbations
同宿和异宿分岔、冲击波和奇异扰动
- 批准号:
9973105 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Theory and Applications of Homo- clinic and Heteroclinic Bifurcation
数学科学:同宿和异宿分岔的理论与应用
- 批准号:
9205535 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Theory and Applications of Homoclinicand Heteroclinic Bifurcation
数学科学:同宿和异宿分岔的理论与应用
- 批准号:
9002803 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
- 批准号:
2242447 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
General Theory of Implicit Regularization
隐式正则化的一般理论
- 批准号:
EP/Y028333/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
- 批准号:
23K19981 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
- 批准号:
RGPIN-2018-06134 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
- 批准号:
RGPIN-2021-02618 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
- 批准号:
2143215 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Efficient and robust inference for regularization with regular and functional data
使用常规数据和函数数据进行高效且稳健的正则化推理
- 批准号:
RGPIN-2016-06366 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
- 批准号:
RGPIN-2021-03747 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Exploration of nonlinear solutions dicribing wave turbulence using regularization
使用正则化描述波湍流的非线性解的探索
- 批准号:
22K03897 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularization Techniques for Optimal Transportation
最佳运输的正则化技术
- 批准号:
567921-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral