Stability of Patterns
模式的稳定性
基本信息
- 批准号:0708386
- 负责人:
- 金额:$ 40.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractLin and Schecter propose to use the Dafermos regularization of a system of conservation laws to approach difficult questions concerning systems of viscous conservation laws. The former is an artificial mathematical construct; the latter are ubiquitous in the sciences, where they represent conservation of mass, momentum, energy, etc. in many situations. Building on their earlier work, Lin and Schecter propose to complete their analysis of the spectrum of the linearized Dafermos operator. They propose to use this analysis to determine the stability of Riemann solutions as asymptotic states of viscous conservation laws. They also propose to investigate related issues that have arisen in the course of this work, including possible generalizations of the Exchange Lemma of geometric singular perturbation theory; extensions to third- and fourth-order regularizations of conservation laws; and a new approach to stability of Riemann solutions of systems of conservation laws without viscosity.In many areas of science and technology, various situations involving fluid flow, such as oil recovery and flow of thin liquid films used in manufacturing, can be mathematically modeled by equations called viscous conservation laws. The models become more tractable when one drops various terms, leaving only a system of conservation laws. For these equations one can often construct explicit solutions called Riemann solutions, that frequently involve jumps that move with varying speeds. An example from oil recovery using injection of water is a moving front that is mostly water on one side and mostly oil on the other; the water pushes the oil toward the well. One reason Riemann solutions are important is that it is believed that in many situations, solutions of viscous conservation laws, appropriately rescaled, tend to look more and more like Riemann solutions as time goes on. However, there are only a few, rather artificial situations is which this behavior is proved. A related fact is that we do not have good mathematical techniques to check whether Riemann solutions are stable, i.e., are really approached for a significant set of initial configurations of the viscous conservation laws. Lin and Schecter have developed a new approach to these issues using a different simplification of the viscous conservation laws, the so-called Dafermos regularization. This equation admits a smoothed-out version of the Riemann solution as a steady-state. In principle, one can check its stability by relatively familiar mathematical methods. Lin and Schecter plan to continue their work on the stability of these smoothed Riemann solutions, and to use this work to approach the physically relevant situation.
摘要林和谢克特提出利用守恒律系统的Dafermos正则化来解决粘性守恒律系统的困难问题。前者是一个人工的数学概念;后者在科学中普遍存在,在许多情况下它们代表质量、动量、能量等守恒。在他们早期工作的基础上,Lin和Scheck建议完成对线性化Dafermos算子的频谱分析。他们建议利用这种分析来确定作为粘性守恒律的渐近态的Riemann解的稳定性。他们还建议研究在这项工作中出现的相关问题,包括几何奇异摄动理论的交换引理的可能推广;守恒律的三阶和四阶正则化的推广;以及无粘性守恒律组Riemann解的稳定性的新方法。在许多科学和技术领域,涉及流体流动的各种情况,如石油回收和制造中使用的薄膜液体流动,可以用称为粘性守恒律的方程来数学建模。当人们去掉不同的项时,模型变得更容易处理,只剩下一个守恒定律体系。对于这些方程,人们通常可以构造出称为黎曼解的显式解,它经常涉及以不同速度移动的跳跃。注水采油的一个例子是移动的前锋,一侧主要是水,另一侧主要是石油;水将石油推向油井。黎曼解很重要的一个原因是,人们认为,在许多情况下,粘性守恒律的解,经过适当的重新标度,随着时间的推移,往往看起来越来越像黎曼解。然而,只有少数几种相当人为的情况可以证明这一行为。一个相关的事实是,我们没有很好的数学技术来检查Riemann解是否稳定,即是否真正接近于粘性守恒律的一组重要的初始构型。林和谢克特开发了一种新的方法来解决这些问题,他们使用了对粘性守恒定律的不同简化,即所谓的Dafermos正则化。这个方程允许黎曼解的一个平滑版本作为稳态。原则上,人们可以用相对熟悉的数学方法来检验它的稳定性。林和谢克特计划继续他们关于这些光滑黎曼解的稳定性的工作,并利用这项工作来接近物理上相关的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Schecter其他文献
Steam condensation waves in water-saturated porous rock
- DOI:
10.1007/bf02970859 - 发表时间:
2004-09-01 - 期刊:
- 影响因子:2.100
- 作者:
Johannes Bruining;Dan Marchesin;Stephen Schecter - 通讯作者:
Stephen Schecter
Structure of the first-order solution set for a class of nonlinear programs with parameters
- DOI:
10.1007/bf01582165 - 发表时间:
1986-01-01 - 期刊:
- 影响因子:2.500
- 作者:
Stephen Schecter - 通讯作者:
Stephen Schecter
Exchange lemmas 1: Deng's lemma
- DOI:
10.1016/j.jde.2007.08.011 - 发表时间:
2008-07 - 期刊:
- 影响因子:2.4
- 作者:
Stephen Schecter - 通讯作者:
Stephen Schecter
Game Theory in Action: An Introduction to Classical and Evolutionary Models
博弈论的实践:经典模型和进化模型简介
- DOI:
10.1515/9781400880881 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Stephen Schecter;Herbert Gintis - 通讯作者:
Herbert Gintis
Codimension-One Riemann Solutions: Missing Rarefactions Adjacent to Doubly Sonic Transitional Waves
- DOI:
10.1023/a:1015126703505 - 发表时间:
2002-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Stephen Schecter - 通讯作者:
Stephen Schecter
Stephen Schecter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Schecter', 18)}}的其他基金
The Dafermos Regularization of a System of Conservation Laws
守恒定律体系的达弗莫斯正则化
- 批准号:
0406016 - 财政年份:2004
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Homoclinic and Heteroclinic Bifurcations, Shock Waves, and Singular Perturbations
同宿和异宿分岔、冲击波和奇异扰动
- 批准号:
9973105 - 财政年份:1999
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Theory and Applications of Homo- clinic and Heteroclinic Bifurcation
数学科学:同宿和异宿分岔的理论与应用
- 批准号:
9205535 - 财政年份:1992
- 资助金额:
$ 40.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Theory and Applications of Homoclinicand Heteroclinic Bifurcation
数学科学:同宿和异宿分岔的理论与应用
- 批准号:
9002803 - 财政年份:1990
- 资助金额:
$ 40.3万 - 项目类别:
Continuing Grant
相似海外基金
Stability Patterns in the Homology of Moduli Spaces
模空间同调中的稳定性模式
- 批准号:
2202943 - 财政年份:2022
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Stability analysis of matrix patterns
矩阵模式的稳定性分析
- 批准号:
564586-2021 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
University Undergraduate Student Research Awards
Growth and patterns: existence, stability, and dynamics
增长和模式:存在、稳定性和动态
- 批准号:
2006887 - 财政年份:2020
- 资助金额:
$ 40.3万 - 项目类别:
Continuing Grant
Stability And Change In Canada's Forested Landscapes: A Conceptual Model For Understanding Dynamic Connectivity Patterns Across Decades
加拿大森林景观的稳定性和变化:理解数十年来动态连通模式的概念模型
- 批准号:
RGPIN-2016-05893 - 财政年份:2020
- 资助金额:
$ 40.3万 - 项目类别:
Discovery Grants Program - Individual
Social isolation from childhood to young adulthood:Identifying patterns of stability & change for a better understanding of later health & functioning
从童年到成年早期的社会隔离:识别稳定模式
- 批准号:
2435017 - 财政年份:2020
- 资助金额:
$ 40.3万 - 项目类别:
Studentship
Stability And Change In Canada's Forested Landscapes: A Conceptual Model For Understanding Dynamic Connectivity Patterns Across Decades
加拿大森林景观的稳定性和变化:理解数十年来动态连通模式的概念模型
- 批准号:
RGPIN-2016-05893 - 财政年份:2019
- 资助金额:
$ 40.3万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale hierarchical congestion cotrol strategies based on stability properties of dya-to-day traffic flow patterns in metropolitan express networks
城域快运网络中基于每日交通流模式稳定性的多尺度分层拥塞控制策略
- 批准号:
18H01551 - 财政年份:2018
- 资助金额:
$ 40.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Imperfect Patterns-Existence, Stability, and Essential Spectrum
不完美模式——存在性、稳定性和本质谱
- 批准号:
1815079 - 财政年份:2018
- 资助金额:
$ 40.3万 - 项目类别:
Continuing Grant
NSF Postdoc Fellowship in Biology FY 2017: Exploring the evolutionary stability of larval type: a phylogenetic analysis of developmental patterns in extant and extinct sea biscuits
2017 财年 NSF 生物学博士后奖学金:探索幼虫类型的进化稳定性:现存和灭绝海饼干发育模式的系统发育分析
- 批准号:
1710663 - 财政年份:2018
- 资助金额:
$ 40.3万 - 项目类别:
Fellowship Award
Stability And Change In Canada's Forested Landscapes: A Conceptual Model For Understanding Dynamic Connectivity Patterns Across Decades
加拿大森林景观的稳定性和变化:理解数十年来动态连通模式的概念模型
- 批准号:
RGPIN-2016-05893 - 财政年份:2018
- 资助金额:
$ 40.3万 - 项目类别:
Discovery Grants Program - Individual