Mathematical Sciences: Greedy Growing and its Applications

数学科学:贪婪增长及其应用

基本信息

  • 批准号:
    9501926
  • 负责人:
  • 金额:
    $ 7.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-01 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

9501926 Nobel Binary trees play an important role in the methodology of statistics and engineering. Classification trees have been applied to variety of statistical problems, ranging from mortality studies to the recognition of functional groups in gene sequences. Quantization trees have been applied to the compression of medical images and sampled speech. The problem of designing good classification and quantization trees from finite data sets is usually addressed through the use of greedy growing algorithms. While the empirical behavior of these algorithms is well understood, there has been little theory to support their use, or to examine their behavior on large data sets. The proposed research will undertake a systematic study of greedy growing algorithms. It has three broad objectives: To develop theoretical tools that will provide a means of rigorously analyzing such algorithms; To apply these tools to the analysis and comparison of existing algorithms; To use these tools, in conjunction with computer simulations, in the design of new algorithms for specific applications. A key feature of the proposed research is that it addresses classification and quantization in the same framework. Educational activities will be one of the key responsibilities of the principal investigator during the duration of the grant. The Statistics Department at the University of North Carolina at Chapel Hill has a strong tradition of graduate and undergraduate education. Maintaining the tradition entails a strong commitment to teaching, as well as interaction with students, both inside and outside of the classroom. We hope to further the tradition through the development of new courses, which will introduce students to the basic ideas behind the proposed research. Subject to departmental approval, graduate level courses in Statistical Pattern Recognition and Complexity-based Statistical Methods will be developed. A reading course will be designed to encourage advanced graduate students to undertake superviqed research in the proposed area of study. Tree-structured methods of data analysis play an important role in statistics and engineering, because they are easy to implement and lend themselves to ready interpretation. Tree-structured procedures have been applied to statistical problems ranging from the study of housing prices to the prediction of heart attacks. Related procedures have been applied by engineers to the compression of medical images and human speech. In each application, a suitable tree must be constructed from experimental data sets that are typical of the behavior under study. In practice, trees are frequently designed by greedy growing algorithms, which build a tree iteratively, from the ground up. While these algorithms are well understood from an experimental standpoint, there has been little theory to support their use, or to examine their behavior on very large data sets. The proposed research will undertake a systematic study of greedy growing algorithms. It has three broad objectives: To develop theoretical tools that will provide a means of rigorously analyzing such algorithms; To apply these tools to the analysis and comparison of existing algorithms; To use these tools, in conjunction with computer simulations, in the design of new algorithms for specific applications. A key feature of the proposed research is that it addresses statistical and engineering applications within the same framework. Educational activities will be one of the key responsibilities of the principal investigator during the duration of the grant. The Statistics Department at the University of North Carolina at Chapel Hill has a strong tradition of graduate and undergraduate education. Maintaining the tradition entails a strong commitment to teaching, as well as interaction with students, both inside and outside of the classroom. We hope to further the tradition through the development of new courses, which will introduce graduate students to the basic ideas behind the proposed research. In addition, a reading course will be designed to encourage advanced graduate students to undertake supervised research in the proposed area of study.
9501926诺贝尔二叉树在统计学和工程学方法论中发挥着重要作用。 分类树已被应用于各种统计问题,从死亡率研究到基因序列中功能组的识别。 量化树已被应用于医学图像和采样语音的压缩。 从有限的数据集设计好的分类和量化树的问题通常通过使用贪婪增长算法来解决。 虽然这些算法的经验行为已经很好地理解,但很少有理论支持它们的使用,或者在大型数据集上检查它们的行为。 本文将对贪婪增长算法进行系统的研究。 它有三大目标:开发理论工具,提供严格分析这些算法的方法;将这些工具应用于现有算法的分析和比较;将这些工具与计算机模拟结合使用,为特定应用设计新算法。拟议研究的一个关键特点是,它解决了在同一框架中的分类和量化。 教育活动将是主要研究者在赠款期间的主要职责之一。位于查佩尔山的北卡罗来纳州大学统计系有着浓厚的研究生和本科生教育传统。保持传统需要对教学的坚定承诺,以及与学生的互动,无论是在课堂内外。我们希望通过新课程的开发来进一步发扬传统,这将向学生介绍拟议研究背后的基本思想。 经部门批准,将开发统计模式识别和基于复杂性的统计方法的研究生课程。将设计一门阅读课程,以鼓励高级研究生在拟议的研究领域进行监督研究。 数据分析的树结构方法在统计和工程中起着重要的作用,因为它们易于实现并易于解释。树结构程序已被应用于从房价研究到心脏病发作预测的统计问题。 相关程序已被工程师应用于医学图像和人类语音的压缩。 在每个应用程序中,一个合适的树必须从实验数据集,是典型的行为正在研究。在实践中,树通常是由贪婪增长算法设计的,该算法从头开始迭代地构建树。虽然这些算法从实验的角度来看是很好理解的,但很少有理论支持它们的使用,或者在非常大的数据集上检查它们的行为。 本文将对贪婪增长算法进行系统的研究。 它有三大目标:开发理论工具,提供严格分析这些算法的方法;将这些工具应用于现有算法的分析和比较;将这些工具与计算机模拟结合使用,为特定应用设计新算法。拟议研究的一个关键特征是,它在同一框架内解决了统计和工程应用问题。 教育活动将是主要研究者在赠款期间的主要职责之一。位于查佩尔山的北卡罗来纳州大学统计系有着浓厚的研究生和本科生教育传统。保持传统需要对教学的坚定承诺,以及与学生的互动,无论是在课堂内外。我们希望通过新课程的开发进一步传统,这将向研究生介绍拟议研究背后的基本思想。此外,还将设计一门阅读课程,以鼓励高级研究生在拟议的研究领域进行有指导的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Nobel其他文献

Andrew Nobel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Nobel', 18)}}的其他基金

Inference for Stationary Processes: Optimal Transport and Generalized Bayesian Approaches
平稳过程的推理:最优传输和广义贝叶斯方法
  • 批准号:
    2113676
  • 财政年份:
    2021
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Iterative testing procedures and high-dimensional scaling limits of extremal random structures
迭代测试程序和极值随机结构的高维缩放限制
  • 批准号:
    1613072
  • 财政年份:
    2016
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Optimality Landscapes and Exploratory Data Analysis
最优性景观和探索性数据分析
  • 批准号:
    1310002
  • 财政年份:
    2013
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Significance Based Procedures for Mining and Prediction of Large Data Sets
基于显着性的大数据集挖掘和预测程序
  • 批准号:
    0907177
  • 财政年份:
    2009
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Analysis of High Dimensional Data Using Subspace Clustering
使用子空间聚类分析高维数据
  • 批准号:
    0406361
  • 财政年份:
    2004
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Estimation from Dynamical Systems and Individual Sequences
动力系统和个体序列的估计
  • 批准号:
    9971964
  • 财政年份:
    1999
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Research Grant
International Centre for Mathematical Sciences 2024
国际数学科学中心 2024
  • 批准号:
    EP/Z000467/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Research Grant
Isaac Newton Institute for Mathematical Sciences (INI)
艾萨克·牛顿数学科学研究所 (INI)
  • 批准号:
    EP/Z000580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Research Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
  • 批准号:
    2330043
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Cooperative Agreement
REU Site: Bigelow Laboratory for Ocean Sciences - Undergraduate Research Experience in the Gulf of Maine and the World Ocean
REU 站点:毕格罗海洋科学实验室 - 缅因湾和世界海洋的本科生研究经验
  • 批准号:
    2349230
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: A Syndrome of Care: The New Sciences of Survivorship at the Frontier of Medical Rescue
博士论文研究:护理综合症:医疗救援前沿的生存新科学
  • 批准号:
    2341900
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Standard Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 7.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了