Mathematical Sciences: Perturbation Theory for Near-Integrable Equations and Its Application

数学科学:近可积方程的微扰理论及其应用

基本信息

  • 批准号:
    9502142
  • 负责人:
  • 金额:
    $ 23.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

9502142 Kovacic This work is supported by a National Science Foundation Faculty Early Career Development Award. The research will focus on the theory of near- integrable systems. These systems are small perturbations of completely integrable ordinary and partial differential equations or integro-differential equations. Two areas will be addressed: multi-pulse homoclinic orbits in low-dimensional systems, and regular and irregular dynamics of the Maxwell-Bloch integro-partial differential equations that describe ring- cavity laser optics. The proposed research in the area of multi-pulse homoclinic orbits is a continuation of the author's previous work on unstable resonant systems. It will exhibit several new classes of multi-pulse orbits in a large family of near-integrable systems, and thus reveal the intricate phase-space structure of the systems in this family. This research will also provide computable methods for verifying the presence of these complicated homoclinic orbits, and therefore irregular dynamics, in specific examples. Applications of these methods in mechanics, fluid and solid dynamics, and nonlinear optics are also proposed. In the area of the Maxwell-Bloch equations, the proposed research contains a broad array of theoretical, computational, and applied questions. These questions include finding new explicit solutions of the integrable Maxwell-Bloch equations, homoclinic orbits and chaotic dynamics, finite-dimensional attractors, stabilization of the excited states of lasers, numerical simulations of solutions, and mathematical descriptions of fiber lasers and diode lasers. Comparisons with realistic physical and engineering applications and experiments are also proposed. The education component involves translating the author's research experience into a geometric and dynamical-systems oriented approach to teaching courses in differential equations on the sophomore, junior-senior, and graduate levels, and advising students and involving them in research collaborations with Los Alamos National Laboratory. The National Science Foundation strongly encourages the early development of academic faculty as both educators and researchers. The Faculty Early Career Development (CAREER) Program is a Foundation- wide program that provides for the support of junior faculty within the context of their overall career development. It combines in a single program the support of quality research and education in the broadest sense and the full participation of those traditionally underrepresented in science and engineering. This program enhances and emphasizes the importance the Foundation places on the development of full, balanced academic careers that include both research and education. The research component of this project involves intended research that addresses both regular, mainly time-periodic, and irregular, or chaotic, behavior in two classes of physical systems in mechanics and laser optics. The work will focus on mathematical models that are near-integrable, that is, models whose degree of approximation is a small step away from making them explicitly solvable. By neglecting certain small quantities, these models do become explicitly solvable, or integrable. The explicit solutions obtained in this way may be used to approximate the solutions of the more complicated near-integrable systems. The proposed work will thus develop a mathematical description of the mechanisms behind certain types of behavior of the physical systems under investigation, such as the irregular beats in the amplitudes of coupled pendula, and some of the regular and chaotic operation regimes of lasers. Numerical computations will be used to motivate the analytical investigations and confirm their findings, as well as to extend their results to mathematical models that are less simplified and thus not amenable to either explicit or approximate solution, but are more phys ically accurate. Comparisons with realistic physical and engineering applications and experiments are also proposed. The mathematical techniques discovered in the course of this investigation should be general enough to apply to similar problems in other areas of physics, such as nonlinear fiber optics, solid, and fluid mechanics. The education component will involve incorporating the author's research experience into classroom work on the sophomore, junior-senior, and graduate levels and advising students and involving them in research collaborations with Los Alamos National Laboratory.
9502142 Kovacic 这项工作得到了国家科学基金会教师早期职业发展奖的支持。 研究将集中于近可积系统理论。这些系统是完全可积的常微分方程和偏微分方程或积分微分方程的小扰动。将讨论两个领域:低维系统中的多脉冲同宿轨道,以及描述环腔激光光学的麦克斯韦-布洛赫积分偏微分方程的规则和不规则动力学。所提出的多脉冲同宿轨道领域的研究是作者之前关于不稳定谐振系统的工作的延续。它将在一大类近可积系统中展示几类新的多脉冲轨道,从而揭示该系统中复杂的相空间结构。 这项研究还将提供可计算的方法来验证这些复杂的同宿轨道的存在,从而在具体例子中验证不规则动力学。 还提出了这些方法在力学、流体和固体动力学以及非线性光学中的应用。在麦克斯韦-布洛赫方程领域,拟议的研究包含广泛的理论、计算和应用问题。 这些问题包括寻找可积麦克斯韦-布洛赫方程的新显式解、同宿轨道和混沌动力学、有限维吸引子、激光器激发态的稳定性、解的数值模拟以及光纤激光器和二极管激光器的数学描述。 还提出了与实际物理和工程应用及实验的比较。 教育部分包括将作者的研究经验转化为面向几何和动力系统的方法,在大二、大三和研究生阶段教授微分方程课程,并为学生提供建议并让他们参与与洛斯阿拉莫斯国家实验室的研究合作。 美国国家科学基金会大力鼓励学术人员作为教育者和研究人员的早期发展。 教师早期职业发展(CAREER)计划是一项基金会范围内的计划,为初级教师的整体职业发展提供支持。 它将最广泛意义上的高质量研究和教育的支持以及传统上在科学和工程领域代表性不足的人们的充分参与结合在一个计划中。 该计划增强并强调了基金会对包括研究和教育在内的全面、平衡的学术职业发展的重视。 该项目的研究部分涉及旨在研究力学和激光光学两类物理系统中的规则(主要是时间周期)和不规则(或混沌)行为的研究。 这项工作将重点关注近可积的数学模型,即近似程度离显式可解仅一小步之遥的模型。 通过忽略某些小量,这些模型确实变得可明确求解或可积。 以这种方式获得的显式解可用于近似更复杂的近可积系统的解。 因此,拟议的工作将对所研究的物理系统的某些类型行为背后的机制进行数学描述,例如耦合摆振幅的不规则节拍,以及激光器的一些规则和混沌操作机制。 数值计算将用于激发分析研究并确认其发现,并将其结果扩展到不太简化的数学模型,因此不适合显式或近似解,但在物理上更准确。 还提出了与实际物理和工程应用及实验的比较。在这项研究过程中发现的数学技术应该足够通用,可以应用于其他物理领域的类似问题,例如非线性光纤、固体和流体力学。 教育部分将涉及将作者的研究经验融入到大二、大三和研究生水平的课堂作业中,为学生提供建议并让他们参与与洛斯阿拉莫斯国家实验室的研究合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregor Kovacic其他文献

Gregor Kovacic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregor Kovacic', 18)}}的其他基金

OP: Collaborative Research: Nonlinear Theory of Slow Light
OP:合作研究:慢光非线性理论
  • 批准号:
    1615859
  • 财政年份:
    2016
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Dynamics of Light Interacting with Active Media
光与活性介质相互作用的动力学
  • 批准号:
    1009453
  • 财政年份:
    2010
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
MSM: Collaborative Research: Cortical Processing Across Multiple Scales
MSM:协作研究:跨多个尺度的皮层处理
  • 批准号:
    0506287
  • 财政年份:
    2005
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Mathematical Modeling of the Visual Cortex
视觉皮层的数学建模
  • 批准号:
    0308943
  • 财政年份:
    2003
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applied Dynamics of Near Integrable Systems
数学科学:近可积系统的应用动力学
  • 批准号:
    9403750
  • 财政年份:
    1994
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: "Asymptotic & Singular Perturbation Methods for Bifurcation Problems with Applications"
数学科学:“渐近
  • 批准号:
    9625843
  • 财政年份:
    1996
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
  • 批准号:
    9404536
  • 财政年份:
    1994
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic/Singular Perturbation Analysis of Dynamic Elastic-Plastic Crack Growth
数学科学:动态弹塑性裂纹扩展的渐近/奇异摄动分析
  • 批准号:
    9404492
  • 财政年份:
    1994
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Nodal Problems and Perturbation Theory in Higher Dimensions
数学科学:高维逆节点问题和微扰理论
  • 批准号:
    9410700
  • 财政年份:
    1994
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applied Geometric Singular Perturbation Theory and Biofilm Modeling
数学科学:应用几何奇异摄动理论和生物膜建模
  • 批准号:
    9404160
  • 财政年份:
    1994
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic and Singular Perturbation Methods for Bifurcation Problems with Applications
数学科学:分岔问题的渐近奇异摄动方法及其应用
  • 批准号:
    9496238
  • 财政年份:
    1994
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Singular Perturbation Techniques in Queueing Theory
数学科学:排队论中的奇异扰动技术
  • 批准号:
    9300136
  • 财政年份:
    1993
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Asymptotic and Singular Perturbation Methods for Bifurcation Problems with Applications
数学科学:分岔问题的渐近奇异摄动方法及其应用
  • 批准号:
    9308009
  • 财政年份:
    1993
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Matrix Inequalities and Matrix Perturbation Theory
数学科学:矩阵不等式和矩阵微扰理论
  • 批准号:
    9201586
  • 财政年份:
    1992
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance to Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
  • 批准号:
    9296098
  • 财政年份:
    1992
  • 资助金额:
    $ 23.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了