Mathematical Sciences: Inverse Nodal Problems and Perturbation Theory in Higher Dimensions
数学科学:高维逆节点问题和微扰理论
基本信息
- 批准号:9410700
- 负责人:
- 金额:$ 2.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-11-15 至 1996-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9410700 McLaughlin This project is concerned the problem of determining which properties of an elastic membrane can be deduced from knowledge of the natural frequencies and the nodal lines of the membrane. The nodal lines are places on the membrane where there is no excitation when the membrane is excited at a natural frequency. There are two major parts to the project. The first is to obtain perturbation results for the natural frequencies and mode shapes. Since the frequencies are not well spaced in higher dimensional problems, small divisor problems must be solved. The second major part of the project is related to the fact that nodal domains (connected domains in the membrane defined by the nodal lines) can be long, thin strips whose diameter is as large as the diameter of the membrane. What is required then is to define approximate nodal domains whose diameter goes to zero as the order of the eigenvalue goes to infinity. The goal of this research is to establish methods for finding properties of vibrating systems from indirect measurements, in particular, measurements of natural frequencies and nodal lines. The natural frequencies can be determined by spectral analysis of impulse response data. The nodal lines can be measured by directing a laser at the vibrating surface when the membrane is excited at a natural frequency. The lines where the Doppler shift in the backscatter is minimized are the nodal lines. From this data the amplitudes of external forces on the membrane and an expression for a (nonconstant) density of the membrane may be determined from explicit formulas for these quantities. These formulas are expected to be very useful for obtaining efficient numerical algorithms to identify the quantities in question. ***
小行星9410700 这个项目涉及的问题是确定哪些性质的弹性膜可以推出的知识的自然频率和节点线的膜。 节线是膜上当膜以固有频率被激励时没有激励的位置。 该项目有两个主要部分。 首先是获得固有频率和振型的摄动结果。 由于频率在高维问题中没有很好的间隔,因此必须解决小除数问题。该项目的第二个主要部分是关于节点域(由节点线定义的膜中的连接域)可以是长而薄的条带,其直径与膜的直径一样大。 然后需要定义近似节点域,当特征值的阶数趋于无穷大时,近似节点域的直径趋于零。 本研究的目的是建立从间接测量,特别是固有频率和节线的测量中发现振动系统特性的方法。 固有频率可以通过脉冲响应数据的频谱分析来确定。 当膜以固有频率被激励时,可以通过将激光引导到振动表面来测量节线。 反向散射中的多普勒频移最小的线是节线。根据这些数据,膜上外力的振幅和膜的(非恒定)密度的表达式可以从这些量的显式公式确定。 这些公式预计将是非常有用的获得有效的数值算法,以确定有关的数量。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joyce McLaughlin其他文献
Joyce McLaughlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joyce McLaughlin', 18)}}的其他基金
SM: Five Inverse Problems Workshops targeting Computational and Applied Mathematics together with Application Areas
SM:针对计算和应用数学以及应用领域的五个反问题研讨会
- 批准号:
0852516 - 财政年份:2009
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Participant Funding: IPRPI Opening Conference
参与者资助:IPRPI 开幕会议
- 批准号:
0425004 - 财政年份:2004
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Participant Funding: Applied Inverse Problems - Theoretical and Computational Aspects
参与者资助:应用反问题 - 理论和计算方面
- 批准号:
0307794 - 财政年份:2003
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
FRG: Solutions for Inverse Problems
FRG:反问题的解决方案
- 批准号:
0101458 - 财政年份:2001
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Collaboration on Inverse Problems Using Holographic Image Data; Using RAM Theory
使用全息图像数据开展反问题合作;
- 批准号:
9802309 - 财政年份:1998
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Applied Mathematics Graduate ResearchTraineeship
数学科学:应用数学研究生研究实习
- 批准号:
9256302 - 财政年份:1993
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Inverse Nodal Problems in Two Dimensions (Mathematics)
二维逆节点问题(数学)
- 批准号:
8902967 - 财政年份:1990
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Mathematical Sciences: An Inverse Spectral Theory Problem for Bounded Domains in Two or More Dimensions
数学科学:二维或多维有界域的反谱理论问题
- 批准号:
8713722 - 财政年份:1987
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences -- Inverse Scattering Theory for Transmission Eigenvalues -- May 27-May 31, 2014
NSF/CBMS 数学科学区域会议 -- 传输特征值的逆散射理论 -- 2014 年 5 月 27 日至 5 月 31 日
- 批准号:
1347475 - 财政年份:2014
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -- Inverse Scattering for Radar Imaging -- Spring 2008
NSF/CBMS 数学科学区域会议——雷达成像的逆散射——2008 年春季
- 批准号:
0735361 - 财政年份:2008
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences, Using Spectral Data to Solve Inverse Problems, December 14-18, 2001
NSF/CBMS 数学科学区域会议,使用谱数据解决反问题,2001 年 12 月 14-18 日
- 批准号:
0085884 - 财政年份:2001
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - "Numerical Methods in Forward and Inverse Electromagnetic Scattering" - June 3-7, 2002
NSF/CBMS 数学科学区域会议 - “正向和逆向电磁散射的数值方法” - 2002 年 6 月 3-7 日
- 批准号:
0121301 - 财政年份:2001
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Spectral Problems and Meromorphic Solutions of Differential Equations
数学科学:反谱问题和微分方程的亚纯解
- 批准号:
9623121 - 财政年份:1996
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI Inverse Problems in Thermal Imaging
数学科学:热成像中的 RUI 反问题
- 批准号:
9623279 - 财政年份:1996
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: Computational Methods for Ill-Posed Inverse Problems
数学科学:不适定反问题的计算方法
- 批准号:
9622119 - 财政年份:1996
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Object Oriented Software Design for Optimization and Inverse Problems
数学科学:优化和反问题的面向对象软件设计
- 批准号:
9627355 - 财政年份:1996
- 资助金额:
$ 2.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Scattering Problems
数学科学:逆散射问题
- 批准号:
9622310 - 财政年份:1996
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant
Mathematical Sciences: REU - "Inverse Problems for Electrical Networks
数学科学:REU - “电气网络的反问题
- 批准号:
9531487 - 财政年份:1996
- 资助金额:
$ 2.73万 - 项目类别:
Continuing Grant